首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Statistical copolymers of 2‐hydroxyethyl methacrylate (HEMA) and 2‐diethylaminoethyl methacrylate (DEA) were synthesized at 50 °C by free‐radical copolymerization in bulk and in a 3 mol L?1 N,N′‐dimethylformamide solution with 2,2′‐azobisisobutyronitrile as an initiator. The solvent effect on the apparent monomer reactivity ratios was attributed to the different aggregation states of HEMA monomer in the different solvents. The copolymers obtained were water‐insoluble at a neutral pH but soluble in an acidic medium when the molar fraction of the DEA content was higher than 0.5. The quaternization of DEA residues increased the hydrophilic character of the copolymers, and they became water‐soluble at a neutral pH when the HEMA content was lower than 0.25. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2427–2434, 2002  相似文献   

2.
The bulk polymerization of methyl methacrylate initiated with 2‐pyrrolidinone and n‐dodecyl mercaptan (R‐SH) has been explored. This polymerization system showed “living” characteristics; for example, the molecular weight of the resulting polymers increased with reaction time by gel permeation chromatographic analysis. Also, the polymer was characterized by Fourier transform infrared spectroscopy, 1H NMR, and 13C NMR techniques. The polymer end with the iniferter structures was found. By the initial‐rate method, the polymerization rate depended on [2‐pyrrolidinone]1.0 and [R‐SH]0. Combining the structure analysis and the polymerization‐rate expression, a possible mechanism was proposed. n‐Dodecyl mercaptan served dual roles—as a catalyst at low conversion and as a chain‐transfer agent at high conversion. Finally, the thermal properties were studied, and the glass‐transition temperature and thermal‐degradation temperature were, respectively, 25 and 80–100 °C higher than that of the azobisisobutyronitrile system. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3692–3702, 2002  相似文献   

3.
A reversible addition–fragmentation chain transfer (RAFT) agent, 2‐cyanoprop‐2‐yl 1‐dithionaphthalate (CPDN), was synthesized and applied to the RAFT polymerization of glycidyl methacrylate (GMA). The polymerization was conducted both in bulk and in a solvent with 2,2′‐azobisisobutyronitrile (AIBN) as the initiator at various temperatures. The results for both types of polymerizations showed that GMA could be polymerized in a controlled way by RAFT polymerization with CPDN as a RAFT agent; the polymerization rate was first‐order with respect to the monomer concentration, and the molecular weight increased linearly with the monomer conversion up to 96.7% at 60 °C, up to 98.9% at 80 °C in bulk, and up to 64.3% at 60 °C in a benzene solution. The polymerization rate of GMA in bulk was obviously faster than that in a benzene solution. The molecular weights obtained from gel permeation chromatography were close to the theoretical values, and the polydispersities of the polymer were relatively low up to high conversions in all cases. It was confirmed by a chain‐extension reaction that the AIBN‐initiated polymerizations of GMA with CPDN as a RAFT agent were well controlled and were consistent with the RAFT mechanism. The epoxy group remained intact in the polymers after the RAFT polymerization of GMA, as indicated by the 1H NMR spectrum. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2558–2565, 2004  相似文献   

4.
A copolymer [P(MMA‐co‐TBPM)] was prepared by the radical polymerization of methyl methacrylate (MMA) and 2,2,6,6‐tetramethyl‐4‐benzyloxyl‐piperidinyl methacrylate (TBPM) with azobisisobutyronitrile as an initiator. TBPM was a new monomer containing an activated ester. Both the copolymer and TBPM were characterized with NMR, IR, and gel permeation chromatography in detail. It was confirmed that P(MMA‐co‐TBPM) could initiate the graft polymerization of styrene by the cleavage of the activated ester of the TBPM segment. This process was controllable, and the molecular weight of the graft chain of polystyrene increased with the increment of conversion. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4398–4403, 2002  相似文献   

5.
Pulsed laser polymerization (PLP) experiments were performed on the bulk polymerization of methyl methacrylate (MMA) at ?34 °C. The aim of this study was to investigate the polymer end groups formed during the photoinitiation process of MMA monomer using 2,2‐dimethoxy‐2‐phenylacetophenone (DMPA) and benzoin as initiators via matrix‐assisted laser desorption/ionization time‐of‐flight (MALDI‐TOF) mass spectrometry. Analysis of the MALDI‐TOF spectra indicated that the two radical fragments generated upon pulsed laser irradiation show markedly different reactivity toward MMA: whereas the benzoyl fragment—common to both DMPA and benzoin—clearly participates in the initiation process, the acetal and benzyl alcohol fragments cannot be identified as end groups in the polymer. The complexity of the MALDI‐TOF spectrum strongly increased with increasing laser intensity, this effect being more pronounced in the case of benzoin. This indicates that a cleaner initiation process is at work when DMPA is used as the photoinitiator. In addition, the MALDI‐TOF spectra were analyzed to extract the propagation‐rate coefficient, kp, of MMA at ?34 °C. The obtained value of kp = 43.8 L mol?1 s?1 agrees well with corresponding numbers obtained via size exclusion chromatography (kp = 40.5 L mol?1 s?1). © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 675–681, 2002; DOI 10.1002/pola.10150  相似文献   

6.
A novel, near‐monodisperse, well‐defined ABA triblock copolymer, poly[2‐(dimethylamino)ethyl methacrylate]‐b‐poly(propylene oxide)‐b‐poly[2‐(dimethylamino)ethyl methacrylate], was synthesized via oxyanion‐initiated polymerization. The initiator was a telechelic‐type potassium alcoholate prepared from poly(propylene glycol) and KH in dry tetrahydrofuran. The copolymers produced were characterized by Fourier transform infrared, 1H NMR, and gel permeation chromatography (GPC). GPC and 1H NMR analyses showed that the products obtained were the desired copolymers, with narrow molecular weight distributions (ca. 1.09–1.11) very close to that of the original poly(propylene glycol). 1H NMR, surface tension measurements, and dynamic light scattering all indicated that the triblock copolymer led to interesting aqueous solution behaviors, including temperature‐induced micellization and very high surface activity. © 2002 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 624–631, 2002; DOI 10.1002/pola.10144  相似文献   

7.
ABA block copolymers of methyl methacrylate and methylphenylsilane were synthesized with a methodology based on atom transfer radical polymerization (ATRP). The reaction of samples of α,ω‐dihalopoly(methylphenylsilane) with 2‐hydroxyethyl‐2‐methyl‐2‐bromoproprionate gave suitable macroinitiators for the ATRP of methyl methacrylate. The latter procedure was carried out at 95 °C in a xylene solution with CuBr and 2,2‐bipyridine as the initiating system. The rate of the polymerization was first‐order with respect to monomer conversion. The block copolymers were characterized with 1H NMR and 13C NMR spectroscopy and size exclusion chromatography, and differential scanning calorimetry was used to obtain preliminary evidence of phase separation in the copolymer products. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 30–40, 2003  相似文献   

8.
In radical polymerization of monofunctional monomers, addition fragmentation chain transfer (AFCT) agents are well known to regulate polymerization and yield polymers with lower molecular weights and narrower molecular weight distributions. Papers concerning bulk photopolymerization of monomer mixtures with AFCT agents are rarely found in literature. In this article, AFCT reagents based on β‐allyl sulfones with different vinyl activating groups were synthesized and compared. The compounds were tested in mono‐ and difunctional monomer systems providing information about the influence on photoreactivity, molecular weight, as well as thermal and mechanical properties of the resultant polymers. Where more potent activating groups (‐Ph, ‐CN) markedly influenced polymerization at lower concentrations, the AFCT reagent with an ester activating group reacted at a similar rate to the methacrylate monomer (CT ≈ 1) and provided the best overall performance. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1417‐1427  相似文献   

9.
A thiophene‐functionalized methacrylate monomer (3‐methylthienyl methacrylate) was synthesized via the esterification of 3‐thiophene methanol with methacryloyl chloride. The methacrylate monomer was polymerized by free‐radical polymerization in the presence of azobisisobutyronitrile as the initiator. Graft copolymers of poly(3‐methylthienyl methacrylate) (PMTM2) and polypyrrole and of PMTM2 and polythiophene were synthesized by constant‐potential electrolyses. p‐Toluene sulfonic acid, sodium dodecyl sulfate, and tetrabutylammonium tetrafluoroborate were used as the supporting electrolytes. PMTM2‐coated platinum electrodes were used as anodes in the polymerization of pyrrole and thiophene. Moreover, the oxidative polymerization of poly(3‐methylthienyl methacrylate) (PMTM1) was studied with FeCl3 as the oxidant. The self‐polymerization of PMTM1 was also investigated by galvanostatic electrolysis both in dichloromethane and in propylene carbonate. The structures of PMTM1 and PMTM2 were investigated by several spectroscopic and thermal methods. The grafting process was elucidated with conductivity measurements, Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, and scanning electron microscopy studies. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4131–4140, 2002  相似文献   

10.
The RAFT (co)polymerization kinetics of methyl methacrylate (MMA) and n‐butyl acrylate (BA) mediated by 2‐cyanoprop‐2‐yl dithiobenzoate was studied with various RAFT concentrations and monomer compositions. The homopolymerization of MMA gave the highest rate. Increasing the BA fraction fBA dramatically decreased the copolymerization rate. The rate reached the lowest point at fMMA ~ 0.2. This observation is in sharp contrast to the conventional RAFT‐free copolymerization, where BA homopolymerization gave the highest rate and the copolymerization rate decreased monotonously with increasing fMMA. This peculiar phenomenon can be explained by the RAFT retardation effect. The RAFT copolymerization rate can be described by 〈Rp〉/〈Rp0 = (1 + 2(〈kc〉/〈kt〉)〈K〉)[RAFT]0)?0.5, where 〈Rp0 is the RAFT‐free copolymerization rate and 〈K〉 is the apparent addition–fragmentation equilibrium coefficient. A theoretical expression of 〈K〉 based on a terminal model of addition and fragmentation reactions was derived and successfully applied to predict the RAFT copolymerization kinetics with the rate parameters obtained from the homopolymerization systems. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3098–3111, 2007  相似文献   

11.
A series of well‐defined, fluorinated diblock copolymers, poly[2‐(dimethylamino)ethyl methacrylate]‐b‐poly(2,2,2‐trifluoroethyl methacrylate) (PDMA‐b‐PTFMA), poly[2‐(dimethylamino)ethyl methacrylate]‐b‐poly(2,2,3,4,4,4‐hexafluorobutyl methacrylate) (PDMA‐b‐PHFMA), and poly[2‐(dimethylamino)ethyl methacrylate]‐b‐poly(2,2,3,3,4,4,5,5‐octafluoropentyl methacrylate) (PDMA‐b‐POFMA), have been synthesized successfully via oxyanion‐initiated polymerization. Potassium benzyl alcoholate (BzO?K+) was used to initiate DMA monomer to yield the first block PDMA. If not quenched, the first living chain could be subsequently used to initiate a feed F‐monomer (such as TFMA, HFMA, or OFMA) to produce diblock copolymers containing different poly(fluoroalkyl methacrylate) moieties. The composition and chemical structure of these fluorinated copolymers were confirmed by 1H NMR, 19F NMR spectroscopy, and gel permeation chromatography (GPC) techniques. The solution behaviors of these copolymers containing (tri‐, hexa‐, or octa‐ F‐atom)FMA were investigated by the measurements of surface tension, dynamic light scattering (DLS), and UV spectrophotometer. The results indicate that these fluorinated copolymers possess relatively high surface activity, especially at neutral media. Moreover, the DLS and UV measurements showed that these fluorinated diblock copolymers possess distinct pH/temperature‐responsive properties, depending not only on the PDMA segment but also on the fluoroalkyl structure of the FMA units. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2702–2712, 2009  相似文献   

12.
The radical copolymerization of styrene and n‐butyl methacrylate mediated by 1‐phenyl‐1‐(2′,2′,6′,6′‐tetramethyl‐1′‐piperidinyl‐oxy)ethane in bulk at 125 °C has been analyzed over a wide range of conversions and monomer feed compositions. Monomer reactivity ratios have been determined, and the Mayo–Lewis terminal model provides excellent predictions for the variations of the intermolecular structure over the entire conversion range. The kinetic analysis of this copolymerization system indicates an apparent propagation rate coefficient independent of the monomer feed composition as well as a limiting conversion that decreases as the styrene monomer feed decreases. This fact is attributed to side reactions leading to unsaturated end groups and the accumulation of nonactive adducts of n‐butyl methacrylate. The number‐average molecular weights linearly increase with conversion, and the copolymers present narrow molecular weight distributions. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2750–2758, 2002  相似文献   

13.
The homogeneous atom transfer radical polymerization (ATRP) of n‐butyl acrylate with CuBr/N‐(n‐hexyl)‐2‐pyridylmethanimine as a catalyst and ethyl 2‐bromoisobutyrate as an initiator was investigated. The kinetic plots of ln([M]0/[M]) versus the reaction time for the ATRP systems in different solvents such as toluene, anisole, N,N‐dimethylformamide, and 1‐butanol were linear throughout the reactions, and the experimental molecular weights increased linearly with increasing monomer conversion and were very close to the theoretical values. These, together with the relatively narrow molecular weight distributions (polydispersity index ~ 1.40 in most cases with monomer conversion > 50%), indicated that the polymerization was living and controlled. Toluene appeared to be the best solvent for the studied ATRP system in terms of the polymerization rate and molecular weight distribution among the solvents used. The polymerization showed zero order with respect to both the initiator and the catalyst, probably because of the presence of a self‐regulation process at the beginning of the reaction. The reaction temperature had a positive effect on the polymerization rate, and the optimum reaction temperature was found to be 100 °C. An apparent enthalpy of activation of 81.2 kJ/mol was determined for the ATRP of n‐butyl acrylate, corresponding to an enthalpy of equilibrium of 63.6 kJ/mol. An apparent enthalpy of activation of 52.8 kJ/mol was also obtained for the ATRP of methyl methacrylate under similar reaction conditions. Moreover, the CuBr/N‐(n‐hexyl)‐2‐pyridylmethanimine‐based system was proven to be applicable to living block copolymerization and living random copolymerization of n‐butyl acrylate with methyl methacrylate. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3549–3561, 2002  相似文献   

14.
Novel multigraft copolymers of poly(methyl methacrylate‐graft‐polystyrene) (PMMA‐g‐PS) in which the number of graft PS side chains was varied were prepared by a subsequent two‐step living radical copolymerization approach. A polymerizable 4‐vinylbezenyl 2,2,6,6‐tetramethyl‐1‐piperidinyloxy (TEMPO) monomer (STEMPO), which functioned as both a monomer and a radical trapper, was placed in a low‐temperature atom transfer radical polymerization (60°C) process of methyl methacrylate with ethyl 2‐bromopronionate (EPNBr) as an initiator to gain ethyl pronionate‐capped prepolymers with TEMPO moieties, PMMA‐STEMPOs. The number of TEMPO moieties grafted on the PMMA backbone could be designed by varying STEMPO/EPNBr, for example, the ratios of 1/2, 2/3, or 3/4 gained one, two, or three graft TEMPO moieties, respectively. The resulting prepolymers either as a macromolecular initiator or a trapper copolymerized with styrene in the control of stable free‐radical polymerization at an elevated temperature (120 °C), producing the corresponding multigraft copolymers, PMMA‐g‐PSs. The nitroxyl‐functionalized PMMA prepolymers produced a relatively high initiation efficiency (>0.8) as a result of the stereohindrance and slow diffusion of TEMPO moieties connected on the long PMMA backbone. The polymerization kinetics in two processes showed a living radical polymerization characteristic. The molecular structures of these prepolymers and graft copolymers were well characterized by combining Fourier transform infrared spectroscopy, gel permeation chromatography, chemical element analysis, and 1H NMR. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1876–1884, 2002  相似文献   

15.
We demonstrated that density functional theory calculations provide a reliable and quantitative prediction of the trends in C? S bond dissociation energies using several model compounds as photoinitiator. On the basis of this information, we designed a possible photofunctional initiator for the polymerization of hydrophilic vinyl monomers. Photopolymerization of 2‐hydroxyethyl methacrylate (HEMA) hydrophilic monomer was carried out in ethanol initiated by 2‐(N,N‐diethyldithiocarbamyl)isobutyric acid (DTCA) under UV irradiation. We performed the first‐order time‐conversion plots in this polymerization system, and the straight line in the semilogarithmic coordinates indicated first order in monomer. The molecular weight of the poly(2‐hydroxyethyl methacrylate) (PHEMA) increased with increasing conversion. The molecular weight distribution (Mw/Mn) of the PHEMA was about 1.5. Methyl methacrylate (MMA) could also be polymerized in a living fashion with such a PHEMA precursor as a macroinitiator because PHEMA exhibited a dithiocarbamate (DC) group at its terminal end. This system could be applied to the architecture of amphiphilic block copolymers. It was concluded that these polymerization systems proceeded with controlled radical mechanism. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 76–82, 2004  相似文献   

16.
Well‐defined high oil‐absorption resin was successfully prepared via living radical polymerization on surface of polystyrene resin‐supported N‐chlorosulfonamide group utilizing methyl methacrylate and butyl methacrylate as monomers, ferric trichloride/iminodiacetic acid (FeCl3/IDA) as catalyst system, pentaerythritol tetraacrylate as crosslinker, and L ‐ascorbic acid as reducing agent. The polymerization proceeded in a “living” polymerization manner as indicated by linearity kinetic plot of the polymerization. Effects of crosslinker, catalyst, macroinitiator, reducing agent on polymerization and absorption property were discussed in detail. The chemical structure of sorbent was determined by FTIR spectrometry. The oil‐absorption resin shows a toluene absorption capacity of 21 g g?1. The adsorption of oil behaves as pseudo‐first‐order kinetic model rather than pseudo‐second‐order kinetic model. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

17.
Free‐radical homo‐ and copolymerization behavior of N,N‐diethyl‐2‐methylene‐3‐butenamide (DEA) was investigated. When the monomer was heated in bulk at 60 °C for 25 h without initiator, rubbery, solid gel was formed by the thermal polymerization. No such reaction was observed when the polymerization was carried out in 2 mol/L of benzene solution with with 1 mol % of azobisisobutyronitrile (AIBN) as an initiator. The polymerization rate (Rp) equation was Rp ∝ [DEA]1.1[AIBN]0.51, and the overall activation energy of polymerization was calculated 84.1 kJ/mol. The microstructure of the resulting polymer was exclusively a 1,4‐structure where both 1,4‐E and 1,4‐Z structures were included. From the product analysis of the telomerization with tert‐butylmercaptan as a telogen, the modes of monomer addition were estimated to be both 1,4‐ and 4,1‐addition. The copolymerizations of this monomer with styrene and/or chloroprene as comonomers were also carried out in benzene solution at 60 °C. In the copolymerization with styrene, the monomer reactivity ratios obtained were r1 = 5.83 and r2 = 0.05, and the Q and e values were Q = 8.4 and e = 0.33, respectively. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 999–1007, 2004  相似文献   

18.
A new graft copolymer, poly(2‐hydroxyethyl methacrylate‐co‐styrene) ‐graft‐poly(?‐caprolactone), was prepared by combination of reversible addition‐fragmentation chain transfer polymerization (RAFT) with coordination‐insertion ring‐opening polymerization (ROP). The copolymerization of styrene (St) and 2‐hydroxyethyl methacrylate (HEMA) was carried out at 60 °C in the presence of 2‐phenylprop‐2‐yl dithiobenzoate (PPDTB) using AIBN as initiator. The molecular weight of poly (2‐hydroxyethyl methacrylate‐co‐styrene) [poly(HEMA‐co‐St)] increased with the monomer conversion, and the molecular weight distribution was in the range of 1.09 ~ 1.39. The ring‐opening polymerization (ROP) of ?‐caprolactone was then initiated by the hydroxyl groups of the poly(HEMA‐co‐St) precursors in the presence of stannous octoate (Sn(Oct)2). GPC and 1H‐NMR data demonstrated the polymerization courses are under control, and nearly all hydroxyl groups took part in the initiation. The efficiency of grafting was very high. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5523–5529, 2004  相似文献   

19.
New graft copolymers of β‐pinene with methyl methacrylate (MMA) or butyl acrylate (BA) were synthesized by the combination of living cationic polymerization and atom transfer radical polymerization (ATRP). β‐Pinene polymers with predetermined molecular weights and narrow molecular weight distributions (MWDs) were prepared by living cationic polymerization with the 1‐phenylethyl chloride/TiCl4/Ti(OiPr)4/nBu4NCl initiating system, and the resultant polymers were brominated quantitatively by N‐bromosuccinamide in the presence of azobisisobutyronitrile, yielding poly(β‐pinene) macroinitiators with different bromine contents (Br/β‐pinene unit molar ratio = 1.0 and 0.5 for macroinitiators a and b , respectively). The macroinitiators, in conjunction with CuBr and 2,2′‐bipyridine, were used to initiate ATRP of BA or MMA. With macroinitiator a or b , the bulk polymerization of BA induced a linear first‐order kinetic plot and gave graft copolymers with controlled molecular weights and MWDs; this indicated the living nature of these polymerizations. The bulk polymerization of MMA initiated with macroinitiator a was completed instantaneously and induced insoluble gel products. However, the controlled polymerization of MMA was achieved with macroinitiator b in toluene and resulted in the desired graft copolymers with controlled molecular weights and MWDs. The structures of the obtained graft copolymers of β‐pinene with (methyl)methacrylate were confirmed by 1H NMR spectra. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1237–1242, 2003  相似文献   

20.
A new monomer, 2,3,6,7,10,11‐hexa(methacrylate) triphenylene (HMTP), and its crystals have been successfully synthesized, and the solid‐state polymerization under UV irradiation has been investigated. The photo polymerization of HMTP in solid was confirmed by the reduction of vinyl bonds in the FT‐IR and UV spectra of PHMTP in comparison with the corresponding spectra of its precursor. Thus, IR spectroscope was used to follow the polymerization of HMTP crystals under UV irradiation, and kinetic studies show a first‐order reaction with rate constant of 6.12 × 10?3 min?1. This value is slightly larger than that measured by the weight method. The polarizing optical microscope and X‐ray diffraction were used to study the crystal structure difference between the polymers and its monomer. The results show that the polymers' crystals obtained from photo polymerization kept the monomer crystal lattice. Because of strong overlap between the π‐electron of the triphenylene, the monomer and polymer crystals showed different fluorescence properties. All these results proved that the photo polymerization of HMTP crystals is governed by the packing structure of monomer molecules; in other words, this reaction is just lattice controlled polymerization. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1526–1534, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号