首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The catalytic activity of nano-crystalline sulfated zirconia catalyst, prepared by sol–gel method and characterized by various analytical tools, was evaluated for the esterification of caprylic acid with different short chain alcohols. The lower concentration of catalyst (0.5 wt%) exhibited 96–98% conversion of caprylic acid with methanol and 100% selectivity for methyl caprylate at 60 °C. The conversion was decreased with increasing carbon chain of alcohols namely with ethanol, n-propanol and n-butanol at 60 °C but increased significantly (91–98%) at higher reaction temperature. The selectivity for respective alkyl caprylate was observed to be 100% irrespective of the alcohol used. The activity of the catalyst was slightly decreased with successive five reaction cycles due to the water formed during the reaction.  相似文献   

2.
Nano-gold and silver particles supported on manganese oxide were synthesized by the co-precipitation method. The catalytic properties of these materials were investigated for the oxidation of benzyl alcohol using molecular oxygen as a source of oxygen. The catalyst was calcined at 300, 400 and 500 °C. They were characterized by electron microscopy, powder X-ray diffraction (XRD) and surface area. It was observed that the calcination temperature affects the size of the nanoparticle, which plays a significant role in the catalytic process. The catalyst calcined at 400 °C, gave a 100% conversion and >99% selectivity, whereas catalysts calcined at 300 and 500 °C gave a conversion of 69.51% and 19.90% respectively, although the selectivity remains >99%.  相似文献   

3.
The oxidative dehydrogenation of ethane into ethylene has been investigated on metal oxide-based sulfated zirconia catalysts at temperatures of 400–600°C. It is found that the activity and selectivity toward ethylene depend on the nature of metal oxide and temperature and that Ni and V oxides supported on sulfated zirconia exhibited higher ethylene yields.  相似文献   

4.
The effect of calcination temperatures on dry reforming catalysts supported on high surface area alumina Ni/γ-Al2O3 (SA-6175) was studied experimentally. In this study, the prepared catalyst was tested in a micro tubular reactor using temperature ranges of 500, 600, 700 and 800 °C at atmospheric pressure, using a total flow rate of 33 ml/min consisting of 3 ml/min of N2, 15 ml/min of CO2 and 15 ml/min of CH4. The calcination was carried out in the range of 500–900 °C. The catalyst is activated inside the reactor at 500–800 °C using hydrogen gas. It was observed that calcination enhances catalyst activity which increases as calcination and reaction temperatures were increased. The highest conversion was obtained at 800 °C reaction temperature by using catalyst calcined at 900 °C and activation at 700 °C. The catalyst characterization conducted supported the observed experimental results.  相似文献   

5.
Research on Chemical Intermediates - A series of ordered mesoporous sulfated zirconia (OMSZ) with different calcination temperatures (400–650 °C) have been synthesized by a...  相似文献   

6.
The effect of catalyst activation conditions on transformations of benzene cation radicals on sulfated zirconia has been studied by in situ ESR spectroscopy. After the catalyst activation at 300°C there was no oligomerization of the cation radicals to biphenyl and heavier products, which is observed after catalyst calcination at 500°C. It has been suggested that the oligomerization is suppressed by the presence of strong Br?nsted sites on the surface.  相似文献   

7.
An iron‐containing mesoporous molecular sieve, or Fe‐MCM‐41, was successfully synthesized the via sol–gel technique using silatrane and FeCl3 as the silicon and iron sources, and was characterized using various techniques. Many factors were investigated, namely, reaction temperature and time, calcination rate, and iron amount in the reaction mixture. It was found that the optimum conditions in which to synthesize Fe‐MCM‐41 was to carry out the reaction at 60 °C for 7 h using a 1 °C min?1 calcination rate and a 550 °C calcination temperature. The catalytic activity and selectivity of styrene epoxidation using hydrogen peroxide showed that the selectivity of the styrene oxide reached 65% at a styrene conversion of 22% over the 1%wt catalyst. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
Ni-phyllosilicate is difficultly formed on the surface of biogenic silica (E) extracted from equisetum fluviatile after calcination, resulting in poor catalytic activity at low temperature (<400 °C). In this work, the hydroxylation treatment of E was carried out to address the problem of lack of the surface silanol group and difficult formation of Ni-phyllosilicate, and the second metal Ru was added using a special procedure to further improve the activity of the catalyst. The surface silanol group concentration of silica (HE) was increased from 0.5 to 0.7 mmol/g after hydroxylation treatment, resulting in formation of more Ni-phyllosilicate with Ni content increase from 11.3 to 17.0 wt%. Considering the great gap of reduction difficulty of Ni-phyllosilicate (>800 °C) and RuO2 species (190 °C), RuO2 species was doped onto the 750 °C-pre-reduced Ni-phyllosilicate via impregnation, and metallic Ru together with Ni could be obtained simultaneously after reduction at a low temperature of 400 °C. The obtained Ru-modified Ni-phyllosilicate catalyst showed high CO2 conversion of 77.3% and CH4 selectivity of 96.4% with high turnover frequency (1.22 s?1, 180 °C) and low activation energy (71.25 kJ/mol). In situ Diffused Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) results revealed that more active formate intermediates (m-HCOO- and m-CO32?) result in high catalytic activity of the Ru-modified Ni-phyllosilicate catalyst. In addition, this catalyst exhibited high anti-sintering property, long-term stability, and hydrothermal stability under severe conditions owing to the Ni-phyllosilicate–based structure.  相似文献   

9.
A series of platinum-promoted sulfated zirconia alumina catalysts (SZA) with different amounts of platinum (0.5, 1, and 2 wt%) were synthesized. Two other catalysts were prepared by mechanically mixing different proportions of the Al-promoted sulfated zirconia with Pt/Al(2)O(3). The 650 degrees C calcined catalysts were characterized by N(2) adsorption/desorption (BET), TPR, and TPD analysis. Butane isomerization activity of the catalysts was studied at 270 degrees C, varying the pretreatment environment and carrier gases. Though the textural properties of the catalysts did not change significantly with platinum loading, the maximum surface area of 116 m(2)/g was exhibited by the catalyst with 1 wt% Pt loading. Under the studied reaction conditions, the air-pretreated catalysts (sulfated zirconia alumina (SZA) and platinated SZA) showed higher n-butane conversion than the N(2)-pretreated catalyst. However, nitrogen was a better carrier gas than H(2), CO(2) or air, and CO(2) and air deactivated the catalyst very fast. Unlike the platinated SZA catalysts, the mechanically mixed catalysts showed an induction phenomenon. A redox mechanism is suggested for butane isomerization over these catalysts. The catalyst SZA was also found to be active for alkylation of benzene with isopropanol, which gave 93% selectivity toward cumene.  相似文献   

10.

The preparation of α-terpineol by direct hydration of limonene catalyzed by zeolites beta was studied. The same catalyst was used to prepare perillyl alcohol by isomerization of β-pinene oxide in the presence of water. The aim was to optimize the reaction conditions to achieve high conversions of starting material and high selectivity to the desired products. In the case of limonene, it was found that the highest selectivity to α-terpineol was 88% with conversion of 36% under the conditions: 50 wt% of catalyst beta 25, 10% aqueous acetic acid (10 mL) (volume ratio limonene:H2O?=?1:4.5), temperature 50 °C, after 24 h. In the case of β-pinene oxide, it was found that the highest selectivity to perillyl alcohol, which was 36% at total conversion, was obtained in the reaction under the following conditions: dimethyl sulfoxide as solvent (volume ratio β-pinene oxide:DMSO?=?1:5), catalyst beta 25 without calcination (15 wt%), demineralized water (molar ratio β-pinene oxide:H2O?=?1:8), temperature 70 °C, 3 h. The present study shows that the studied reactions are suitable for the selective preparation of chosen compounds.

  相似文献   

11.

Sustainable and renewable production of platform chemicals and fuels has been gradually rising. Formic acid is one of the important chemicals for leather, cosmetic and pharmaceutical industries as well as hydrogen source. In this study, selective oxidation of biomass-derived glucose to formic acid was investigated under base free medium at 70 °C over synthesized hydrotalcite-like catalysts using hydrogen peroxide as oxidant. Effect of Mg/Al ratio (6/1, 3/1, 1/1, 1/3 and 1/6) and heat treatment (drying and calcination) on catalyst structure and product distributions; effect of calcination temperature (450, 650 and 900 °C), solvent composition (ethanol/water) and reaction temperature (30, 50 and 70 °C) on catalytic activity and product selectivity were investigated. Reducing the Mg/Al ratio enhanced the density of metal-OH bonds, surface area and uniformity of pores up to some extent. The highest glucose conversion and formic acid selectivity were achieved over Mg–Al (1:3) catalyst as 38.7 and 99.0%, respectively. The calcined catalysts (at 450 °C) exhibited 7 times higher selectivities and 4 times higher activities than the dried ones. However, higher calcination temperatures did not show remarkable increments in activities and yields. Easily prepared, cheap Mg–Al (1:3) catalyst provided promising results even at low temperature with hydrogen peroxide at atmospheric medium in a low boiling point solvent (ethanol).

Graphical abstract
  相似文献   

12.
A highly active superacid of 2–4 wt.% Ru-sulfated ZrO2 for the isomerization of butane to isobutane was obtained by exposing RuOx/ZrO2 to 1 N H2SO4 followed by calcining in air at 550°C. The RuOx/ZrO2 was prepared by impregnating zirconium hydroxide with a solution of RuCl3 followed by drying at 300°C. The catalyst was much more active than the superacid of sulfated zirconia, the temperature difference to show the same conversion between both catalysts being more than 145°C.  相似文献   

13.
Egg shells were subjected to calcination–hydration–dehydration treatment to obtain CaO with high activity. The performance of CaO obtained from the calcination–hydration–dehydration treatment of egg shell and commercial CaO was tested for its catalytic activity via transesterification of waste frying oil (WFO). The results showed that the methyl ester conversion was 67.57% for commercial CaO and it was 94.52% for CaO obtained from the calcination–hydration–dehydration treatment of egg shell at a 5 wt% catalyst (based on oil weight), a methanol to oil ratio of 12:1, a reaction temperature of 65 °C and a reaction time of 1 h. The biodiesel conversion was determined by 1H Nuclear Magnetic Resonance Spectroscopy (1H NMR).  相似文献   

14.
Several metal oxides supported on sulfated zirconia catalysts were tested for the oxidative dehydrogenation of ethane into ethylene by carbon dioxide. It is found that the catalytic behavior of supported oxide catalysts differ depending on the nature of metal oxides. Chromium oxide-sulfated zirconia exhibits the highest ethane conversion and medium level of ethylene selectivity, producing 38% ethylene yield at 50% ethane conversion at 650°C.  相似文献   

15.
《印度化学会志》2021,98(12):100246
Kaolin clay obtained from Kachchh, Gujarat was used as alumina and silica source to synthesize zeolite Y by hydrothermal method. The synthesis route comprised of the following steps: sulfuric acid treatment at 110 ​°C (4 ​h) for impurity removal followed by calcination at 600 ​°C for 4 ​h, thermal activation of kaolin into metakaolin by NaOH fusion at 850 ​°C (8 ​h); aging of reaction mixtures at 50 ​°C (24 ​h); crystallization (24 ​h) followed by washing and drying. The synthesized zeolite Y was examined by multiple characterization techniques which revealed a pore volume of 0.22 ​cm3/g with pore size of 2.89 ​nm having essential surface area of 320 ​m2/g, indicating a porous material having majority of micropores and remaining mesopores. The zeolite exhibited good catalytic activity for succinic acid esterification using ethanol to produce monoethyl and diethyl succinate. The conversion of SA (72%) and yield (60%) of valuable diester indicated good conversion rate and selectivity at moderate reaction conditions. Detailed structural comparison with zeolite Y synthesized using standard chemical route is also carried out. This work demonstrated an effective way of preparing environmentally benign porous zeolite Y having high surface area and pore volume that can be useful for catalytic applications.  相似文献   

16.
Energy generation by photocatalytic water splitting with semiconductors under visible light is an effective method for generating pollution-free energy. In this work, a highly efficient vanadium pentoxide (V2O5)-based composite photocatalyst was prepared by hydrothermal calcination. The preparation conditions were optimized using single factor experiments, factor analysis (FA), principal component analysis (PCA), and response surface method (Design Expert). The results showed that the optimal preparation conditions were 6% Bi2S3 loading, 10 h hydrothermal time, 175.0°C hydrothermal temperature, 4.0 h calcination time, and a calcination temperature of 400.0°C. The results of FA and PCA analysis showed that the hydrothermal temperature, calcination time, and calcination temperature were the three main influencing factors. According to the optimization analysis using the response surface method, the highest hydrogen production rate (590.151 μmol/(g?h)) was obtained at a hydrothermal temperature of 168.74°C, a calcination time of 3.97 h, and a calcination temperature of 390.15°C. The quantum yield of the catalyst was 27.71%.  相似文献   

17.
Glycerol hydrogenolysis to propylene glycol   总被引:1,自引:0,他引:1  
A nickel catalyst showed a considerable selectivity to propylene glycol (up to 98%) at 30% glycerol conversion, under moderate hydrogenation conditions: 200 °C reaction temperature, 20–25 bar hydrogen pressure, 5 wt% catalyst and unprecedented low reaction time of 8 h.  相似文献   

18.
《印度化学会志》2021,98(7):100090
Solvent-free carbonylation of glycerol with urea to glycerol carbonate (GC) was achieved over heterogeneous Cu–Zn mixed oxide catalyst. Cu–Zn catalysts with different ratios of Cu:Zn were prepared using co-precipitation (CP) and oxalate gel (OG) methods. As compared to CuO–ZnO(2:1) catalyst prepared by oxalate gel (OG) method, much higher conversion of glycerol and highest selectivity towards glycerol carbonate (GC) was achieved with CuO–ZnO_CP(2:1) catalyst. Physicochemical properties of prepared catalysts were investigated by using XRD, FT-IR, BET, TPD of CO2 and NH3 and TEM techniques. The effect of stoichiometric ratio of Cu/Zn, calcination temperature of CuO–ZnO catalysts and effect of reaction parameters such as molar ratio of substrates, time and temperature on glycerol conversion to GC were critically studied. Cu/Zn of 2:1 ratio, glycerol–urea 1:1 molar ratio, 145 ​°C reaction temperatures were found to be optimized reaction conditions to achieve highest glycerol conversion of 86% and complete selectivity towards GC. The continuous expel of NH3 from reaction the mixture avoided formation of ammonia complex with CuO–ZnO catalyst. As a result of this, CuO–ZnO catalyst could be recycled up to three times without losing its initial activity.  相似文献   

19.
MoO3催化碳酸二甲酯与乙酸苯酯合成碳酸二苯酯   总被引:4,自引:0,他引:4  
采用焙烧法制备了MoO3催化剂并将其用于碳酸二甲酯(DMC)与乙酸苯酯(PA)合成碳酸二苯酯(DPC)反应,考察了焙烧温度对催化荆性能的影响,并用X射线衍射(XRD)对催化剂结构进行了表征.结果发现,在400或500℃焙烧的催化剂具有良好的催化性能,DMC转化率为73.9%,DPC和甲基苯基碳酸酯的选择性分别为39.5%和56.5%.XRD结果表明,该催化剂物相组成为正交晶系MoO3,且(021)或/和(110)晶面有利于酯交换反应.催化剂使用5次后DMC转化率从73.9%降至10.2%,多次重复使用后的催化剂在窄气气氛中于400或500℃焙烧即可再生,再生后催化剂的性能几乎和新鲜催化剂相当.  相似文献   

20.
Orthorhombic perovskite Na0.1Ca0.9TiO3 nanorods were synthesized at low calcination temperature via alkali hydrothermal synthesis. The synthesized nanorods exhibits a square based prism morphology, with a width and length of 200–500 nm and 2–3 μm respectively. The structural, textural and basic characteristics of the catalyst were examined by SEM, TEM, XRD and BET. The growth direction of the nanorods was confirmed to be along the long symmetry [110] zone axis and the exterior surfaces are found to be polar (110) and (002) with either Ti or Ca exposed in those facets. The catalytic activity of the nanorods was investigated for the transesterification of the low-input Camelina Sativa oil and methanol to give the fatty acid methyl ester (FAME). Effects of important reaction parameters such as methanol to oil molar ratio, catalyst dosage, reaction temperature and reaction time on oil conversion were examined. Optimized biodiesel yield of 93 % was achieved with catalyst dosage of 6 % w/w, methanol to oil molar ratio of 36:1 at reaction temperature of 60 °C for 8 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号