首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In present study, protein loaded poly (lactide-co-glycolide)/chitosan microspheres (PLGA/CS MSs) with spheres-in-sphere structure were prepared in order to weaken the burst release of protein from PLGA microspheres (PLGA MSs) and to buffer acidic micro-milieu. The PLGA MSs and PLGA/CS MSs were characterized in terms of their size distribution, morphology, drug-loading rate, zeta potential and physical-chemical properties. The incubation experiments of PLGA MSs and PLGA/CS MSs were manipulated in PBS solution at pH 7.4, 37 °C to monitor the release of BSA and the vehicles degradation. The release kinetic of BSA was illuminated mainly based on the degradation processes of the matrices. External CS crusts were proved to strikingly improve the release kinetic of the model protein by reducing initial burst release and extending continuous release while acting as a diffusion barrier. Moreover, using PLGA/CS MSs could avoid the decrease of pH value resulted from the acidic products of PLGA MSs because of the effective buffer action of the basic groups in CS. The results demonstrated that the spheres-in-sphere structure is an effective way to control the initial burst release of protein and to overcome the acidic problem of protein-loading PLGA MSs.  相似文献   

2.
This letter reports on the fabrication of hollow,porous and non-porous poly(D,L-lactide-co-glycolide) (PLGA) microspheres(MSs) for the controlled release of protein and promotion of cell compatibility of tough hydrogels.PLGA MSs with different structures were prepared with modified double emulsion methods,using bovine serum albumin(BSA) as a porogen during emulsification.The release of the residual BSA from PLGA MSs was investigated as a function of the MS structure.The hollow PLGA MSs show a faster protein release than the porous MSs,while the non-porous MSs have the slowest protein release.Compositing the PLGA MSs with poly(vinyl alcohol)(PVA) hydrogels promoted chondrocyte adhesion and proliferation on the hydrogels.  相似文献   

3.
A bone morphogenetic protein-2(BMP-2) derived synthetic oligopeptide, S [PO4]KIPKASSVPTELSAISTLYLDDD(P24), has shown great potential for facilitating bone regeneration. However, P24 cannot be directly used onto bone defects, while a continuous sustained delivery of P24 may lead to a better formation of bone tissue. Based on this issue, we have developed a sustained delivery system incorporating P24-loaded poly(lactide-co-glycolide)(PLGA) microspheres and nano-hydroxyapatite(n-HA) into the composite hydrogel. The P24-contained compound material was characterized with NMR, FTIR and SEM to demonstrate the fomiation of compound structure containing P24, PLGA and n-HA. A continuous drug release of P24 was observed for over 60 d that evidently enhanced the efficiency in promoting the proliferation of MC3T3-E1 cells and the secrete of alkaline phosphatase(ALP) in vitro. Moreover, the osteoinduction eflect of the hydrogel system with P24 peptide niicrospheres was demonstrated in vivo and manifested by the result of immunohistochemistry. This novel injectable composite hydrogel is expected to be applied to improving the bone defect treatment in bone tissue engineering.  相似文献   

4.
Monodispersed rifampicin (RFP)-loaded poly(lactide-co-glycolide) (PLGA) microspheres were prepared by a solvent evaporation method. In order to control the sizes of the microspheres, a membrane emulsification technique using Shirasu porous glass (SPG) membranes was applied. RFP/PLGA microspheres with the average diameters of 1.3, 2.2, 5.2, and 9.0 microm were obtained. They were relatively monodisperse and the values of the coefficient of variation (CV) for the size distributions of the microspheres were in the range between 7.0 and 16.0%. The loading efficiency of RFP was in the range between 50.3 and 67.4% independent of the microsphere size. The release ratio of RFP from RFP/PLGA microspheres was measured in pH 7.4 PBS at 37 degrees C. From RFP/PLGA microspheres with average diameters of 1.3 and 2.2 microm, almost 60% of RFP loaded in the microspheres was released in the initial day and the release was terminated almost within 10 days. On the other hand, from those with average diameters of 5.2, and 9.0 microm, the release of RFP was observed even 20 days after the release started.  相似文献   

5.
We have prepared inhalable and monodisperse poly(lactide-co-glycolide) (PLGA) microspheres targeting tubercle bacilli residing in alveolar macrophages. The effects of pulmonary surfactant on the rifampicin (RFP) release rate from RFP-loaded poly (lactide-co-glycolide) microspheres were studied. Also, those of their surface properties of RFP-loaded PLGA microspheres were studied. The RFP release from RFP/PLGA microspheres was accelerated by adsorption of pulmonary surfactant on the particle surface. The fastest RFP release rate was observed from pulmonary surfactant-adsorbed PLGA particles in pH 7.4 buffer solution compared with those in pH 4.0 buffer solution and saline solution. The slowest release rate was observed in the case when saline solution was used as dispersion phase of RFP/PLGA microspheres, although RFP release rate increased by the addition of pulmonary surfactant. From these results it is suggested that when RFP/PLGA microspheres are administrated by inhalation, the RFP release rates from the particles which are not taken up by alveolar macrophages and remain in the alveoli will be small. On the other hand, the RFP release rates and release amounts will be high after RFP/PLGA microspheres are taken up by alveolar macrophages existing in phagosomes, but they become relatively small after RFP/PLGA microspheres move into phagosome-lysosomes by the fusion of phagosomes with lysosomes. The absolute values of the electrophoretic mobility of PLGA microspheres increased by the adsorption of pulmonary surfactants on the surfaces of PLGA microspheres. By analyzing the experimental data using the soft-particle theory, it was indicated that the microspheres became 'softer' and the surface charge density of microspheres increases by the degradation. On the other hand, the surface of PLGA microspheres became harder and the electric charge density increased by the adsorption of pulmonary surfactant on the surfaces of PLGA microspheres. The changes in the surface charge density with degradation became larger by the adsorption of the lung surfactant on PLGA microsphere surfaces. It is considered that the changes in surface properties of PLGA microspheres affect their uptake efficiency by alveolar macrophage.  相似文献   

6.
In this study, a long-term controlled drug release system was designed based on mesoporous bioactive glass coated with poly(lactide-co-glycolide) (MBG/PLGA). In this system ibuprofen (Ibu) and egg white protein were used as the model drugs. Firstly, Ibu was loaded into MBG and MBG/PLGA microspheres were formed after MBG/PLGA. Then the egg white protein was adsorbed outside of the MBG/PLGA because of the interaction between the hydroxyapatite and the protein. The drug release tests indicate that Ibu and egg white protein can release from the long-term controlled dual drugs system at the same time. Notably, the release time of Ibu can reach 18 days, and the release time of egg white protein can reach to 6 days due to the role of PLGA. The release rate of Ibu is 49 % of loading rate (46 %), while the release rate of egg white protein is 47 % of adsorption value (184 μg/mg), indicating that the dual drug release system is highly potential in the practical bone repair application.  相似文献   

7.
Novel poly(lactide-co-glycolide acid)(PLGA) microspheres were developed for sustained delivery of antisense oligonucleotide(ASO). First, a new cationic agent, polyethylenimine(PEI) conjugated to linoleic acid(LA)(PEI-LA) was synthesized by reacting PEI(Mw=800) with linoleoyl chloride. Then, PEI-LA was combined with LOR-2501 to form electrostatic complexes at moderate nitrogen-to-phosphate(N/P) molar ratios which were then encapsulated into poly(lactide-co-glycolide) microspheres by a multiple emulsion-solvent evaporation technique. With an increase in ASO/PEI-LA concentration from 5% to 10%, encapsulation efficiency of ASO in the microspheres reduced from 72.14% to 57.62%, and the particle size of microspheres increased from 28.58 μm to 34.76 μm. In vitro studies show that the release profile of ASO from microspheres prepared at 7.5% ASO-PEI-LA lasted for 14 d. The novel microspheres have a potential use as a sustained release vehicle for ASO.  相似文献   

8.
生物降解聚酯包埋利福平缓释微球的制备及释放行为   总被引:16,自引:0,他引:16  
以生物可降解乙交酯和丙交酯的无规共聚物(PLGA)为载体,将抗结核病药利福平溶解于PLGA的有机溶液中,采用通常乳化-溶剂挥发方法制备了药物缓释微球.研究了影响微球制备的工艺条件.用电子显微镜观察了微球及降解后的表面形态,测定了微球粒径及载药量,评价了载药微球的体外释放行为.结果表明,以质量分数为1%的明胶为稳定剂,制备的微球形态完整,粒径范围为10~30μm,微球中利福平的平均质量分数为24.3%.体外释药时间可以通过高分子的降解速率来调控,本实验的释药时间可以在42~84d之间调控,药物缓释达到了理想的零级动力学释放.因此,利福平PLGA微球具有显著的长效、恒量药物缓释作用.  相似文献   

9.
Monodisperse poly(lactide-co-glycolide) (PLGA) microspheres containing rifampicin (RFP), anti-tubercle drug, as hydrophobic model drug were prepared by solvent evaporation method with a membrane emulsification technique using Shirasu Porous Glass (SPG) membranes. Five kinds of rifampicin-loaded PLGA (RFP/PLGA) microspheres with different sizes were prepared by changing pore size of the membranes. Effect of polyethylene glycol (PEG) added to polyvinyl alcohol (PVA) solution (continuous phase) upon the monodispersity of microspheres was studied. PEG was used as a stabilizer for microspheres dispersing in PVA solution. The most suitable molecular weight of PEG as a stabilizer was 20,000. RFP/PLGA microspheres prepared with PEG20000 were apparently more uniform than those prepared without PEG. The yield of RFP/PLGA microspheres was 100%. The initial burst observed in the release of RFP from RFP/PLGA microspheres was suppressed by the addition of PEG.  相似文献   

10.
We successfully synthesized four kinds of copolymers with varying molecular weights of poly(lactide-co-glycolide)(PLGA) to yield methoxy-poly(ethylene glycol)-block-poly(lactide-co-glycolide)(mPEG-PLGA) nanocarriers:mPEG-PLGA(3k), mPEG-PLGA(9k), mPEG-PLGA(11k) and mPEG-PLGA(16k). An antitumor drug, 10-hydroxycamptothecin(HCPT), was encapsulated into the mPEG-PLGA nanocarrier cores by self-assembly in dialysis. The lower molecular weight nanocarriers degraded more quickly, resulting in mass loss, pH decline, and a rapid HCPT release rate in vitro. The degradation and drug release of the nanocarriers were dependent on the PLGA molecular weight. However, the larger molecular weight nanocarriers could not increase the loading content and encapsulation efficiency. Considering the antitumor effect of these nanocarriers, the mPEG-PLGA(9k) nanocarrier, which had the highest drug loading content[(7.72±0.57)%] and a relatively high encapsulation efficiency[(22.71±5.53)%], is an optimum agent for drug delivery.  相似文献   

11.
A polyelectrolyte complex between a therapeutic peptide and chargeable polymer was applied to prevent peptide denaturation in poly(lactide-co-glycolide) (PLGA) microspheres. Chondroitin sulfate A (CsA) was employed as a polymeric additive for the formation of an ionic complex with insulin (InS). The complex prepared at pH 3.0 evidenced a nano-size in the range of 100–400 nm with a mono distribution. The stability of InS in the complex in an organic/water (O/W) interface was verified via RP-HPLC. The insulin in the complex evidenced a retention time almost identical to native InS, whereas free insulin did not evidence such a retention time. On the basis of these studies, PLGA microspheres including a complex with various CsA/InS ratios were prepared via a double-emulsion method (PLGA/CsA MS). InS loading efficiency in the system is higher than that of the microspheres without CsA. The system evidenced a lower initial burst and, following the initial burst, continuous release kinetics for 30 days. Circular dichroism (CD) spectra demonstrated that the insulin in PLGA/CsA MS is more stable than the PLGA-only microspheres (PLGA/only MS) for 20 days. These results indicate that the complex system with CsA is useful for the long-term delivery of peptides with lower pI values.  相似文献   

12.
利用离子乳化交联法制备了负载肾上腺髓质素的壳聚糖微球,应用热致相分离法制备了乳酸和乙醇酸共聚物/纳米羟基磷灰石(PLGA/nHA)支架材料并在其中包覆载药微球.通过扫描电子显微镜、体外释放行为、材料溶血行为、碱性磷酸酶(ALP)活性的测定、支架材料表面细胞荧光染色和MTT[3-(4,5-二甲基噻唑-2)-2,5-二苯基四氮唑溴盐]比色法等手段综合评价载药支架材料的性能及生物活性.结果表明,微球直径均匀,载药支架孔径大小合适并相互穿通.支架材料的溶血率小于5%,符合医用材料的溶血实验要求.载药支架及支架材料本身对成骨细胞及血管内皮细胞的增殖以及成骨细胞的分化均有一定的促进作用.  相似文献   

13.
The purpose of this study was to develop a suitable formulation for gentamicin sulfate (GS) that gives a sustained release of the drug. Therefore this drug was loaded into poly(D,L-lactide-co-glycolide) (PLGA) and poly(lactic-co-hydroxymethyl glycolic acid) (PLHMGA) microspheres. The effects of various formulation parameters (ethanol, surfactant, osmotic value of the external phase, polymer type and concentration) on particle characteristics (size, loading and release) were investigated. The GS loaded microspheres were prepared using a double emulsion evaporation technique. The results demonstrate that neither ethanol nor surfactants had beneficial effects on the drug loading efficiency (around 4-10%). However, an increase in buffer concentration (and thus osmotic pressure) of the external phase resulted in a substantial increase of GS-loading (from 10 to 28%). Further, an increase of concentration of PLGA in DCM from 10% to 15/20% caused a 4-time increase of the drug loading. The best formulation identified in this study had a loading efficiency of around 70% resulting in PLGA microspheres with a 6% (w/w) loading. The particles showed a burst release of the drug depending on their porosity, followed by a phase of 35 days where hardly any release occurred. The drug was then slowly released for around 25 days likely due to degradation of the microspheres. The drug loading efficiency of GS in PLHMGA was not significantly different from PLGA microspheres (64%). The release of GS from PLHMGA microspheres was faster than that of PLGA because the degradation rate of PLHMGA is more rapid than PLGA. This study shows that prolonged release of gentamicin can be obtained by loading this drug into microspheres made of biodegradable aliphatic polyesters.  相似文献   

14.
In order to encapsulate and controlled-release bioactive proteins,three fibrous membranes,i.e.,poly(L-lactide-co-glycolide)(PLGA),hybrid PLGA and chitosan(H-PLGA/CS),and core/shell PLGA/CS (C-PLGA/CS),were produced by emulsion electrospinning,co-electrospinning and coaxial electrospinning,respectively.Bovine serum albumin(BSA) was selected as a model protein.The loading efficiency of BSA in the PLGA membrane was 1.56%,lower than those of H-PLGA/CS(5.98%) and C-PLGA/CS(4.80%).BSA release profiles from the th...  相似文献   

15.
Biodegradable material poly(D, L ‐lactic‐co‐glycolic) acid (PLGA) plays an important role in drug‐sustained release systems. Here, we describe a glycerol modified solid‐in‐oil‐in‐water (m‐S/O/W) emulsion method for PLGA microspheres, in order to encapsulate proteins in PLGA by utilizing dextran glassy particles to protect the proteins from denaturing, unfolding, and aggregation during preparation and new external water phase to prevent the inner dextran glassy particles from leaking into the external water phase. External water phase containing 20, 40, 60, 80% glycerol showed that proteins released faster and more completely with increased glycerol content. According to their varied release profiles, microspheres of different formulations could be used to encapsulate vaccines or for delivering proteins over long‐term. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
The FDA (U.S. Food and Drug Administration) has approved only a negligible number of poly(lactide-co-glycolide) (PLGA)-based microsphere formulations, indicating the difficulty in developing a PLGA microsphere. A thorough understanding of microsphere formulations is essential to meet the challenge of developing innovative or generic microspheres. In this study, the key factors, especially the key process factors of the marketed PLGA microspheres, were revealed for the first time via a reverse engineering study on Vivitrol® and verified by the development of a generic naltrexone-loaded microsphere (GNM). Qualitative and quantitative similarity with Vivitrol®, in terms of inactive ingredients, was accomplished by the determination of PLGA. Physicochemical characterization of Vivitrol® helped to identify the critical process parameters in each manufacturing step. After being prepared according to the process parameters revealed by reverse engineering, the GNM demonstrated similarity to Vivitrol® in terms of quality attributes and in vitro release (f2 = 65.3). The research on the development of bioequivalent microspheres based on the similar technology of Vivitrol® will benefit the development of other generic or innovative microspheres.  相似文献   

17.
Monodispersed PLGA microspheres containing rifampicin (RFP) have been prepared by solvent evaporation method using a Shirasu porous glass (SPG) membrane. The microspheres were spherical and their average diameter was about 2 microm. The loading efficiency of rifampicin was dependent on the molecular weight of PLGA. The higher loading efficiency was obtained by the usage of PLGA with the lower molecular weight, which may be caused by the interaction of the amino groups of rifampicin with the terminal carboxyl groups of PLGA. PLGA with the monomer compositions of 50/50 and 75/25, of lactic acid/glycolic acid, were used in this study. From rifampicin-loaded PLGA microspheres formulated using PLGA with the molecular weight of 20,000, rifampicin was released with almost constant rate for 20 days after the lag phase was observed for the initial 7 days at pH 7.4. On the other hand, from rifampicin-loaded PLGA microspheres formulated using PLGA with the molecular weight of 5000 or 10,000, almost 90% of rifampicin-loaded in the microspheres was released in the initial 10 days. Highly effective delivery of rifampicin to alveolar macrophages was observed by the usage of rifampicin-loaded PLGA microspheres. Almost 19 times higher concentration of rifampicin was found to be incorporated in alveolar macrophages when rifampicin-loaded PLGA microspheres were added to the cell culture medium than when rifampicin solution was added.  相似文献   

18.
A sustained release poly(DL-lactide-co-glycolide) (PLGA) microsphere delivery system to treat prostate cancer for a luteinizing hormone-releasing hormone (LHRH) antagonists, LXT-101 was prepared and evaluated in the paper. LXT-101 microspheres were prepared from PLGA by three methods: (1) double-emulsion solvent extraction/evaporation technique, (2) single-emulsion solvent extraction/evaporation technique, and (3) S/O/O (solid-in-oil-in-oil) method. The microspheres were investigated on drug loading, particle size, surface morphology and in vitro release profiles. An accelerated release approach was also established in order to expedite the evaluation periods. The in vivo evaluation of the microspheres was made by monitoring testosterone levels after subcutaneous administration to rats. The LXT-101 PLGA microspheres showed smooth and round surfaces according to a scanning electron microscopic investigation, and average particle size of ca. 30 mum according to laser diffractometry. The drug encapsulation efficiency of microspheres was influenced by LA/GA ratio of PLGA, salt concentrations, solvent mixture and preparation methods. Moreover, LA/GA ratio of PLGA, different preparation methods and different peptide stabilizers affected in vitro release of drugs. In vivo study, the testosterone levels were suppressed to castration up to 42 d as for the 7.5 mg/kg dose. And in vivo performance of LXT-101 microspheres was dose-dependent. The weights of rat sexual organs decreased and histopathological appearance of testes had little changes after 4-month microspheres therapy. This also testified that LXT-101 sustained release microspheres could exert the efficacy to suppress the testosterone level to castration with little toxicity. In conclusion, the PLGA microspheres could be a well sustained release system for LXT-101.  相似文献   

19.
The poly(lactide-co-glycolide)-coated magnetic nanoparticles (PLGA MNPs) were prepared as carriers of doxorubicin (PLGA-DOX MNPs) through water-in-oil-in-water (W/O/W) emulsification method. The characteristics of PLGA-DOX MNPs were measured by using transmission electron microscopy (TEM) and vibrating-sampling magnetometry (VSM). It was found that the synthesized nanoparticles were spherical in shape with an average size of 100 ± 20 nm, low aggregation and good magnetic responsivity. Meanwhile, the drug content and encapsulation efficiency of nanoparticles can be achieved by varying the feed weight ratios of PLGA and DOX particles. These PLGA-DOX MNPs also demonstrated sustained release of DOX at 37 °C in buffer solution. Besides, influence of drug-loaded nanoparticles on in vitro cytotoxicity was determined by MTT assay, while cellular apoptosis was detected by Annexin V-FITC apoptosis detection kit. The results showed that PLGA-DOX MNPs retained significant antitumor activities. Therefore, PLGA-DOX MNPs might be considered a promising drug delivery system for cancer chemotherapy.  相似文献   

20.
Biodegradable poly(lactide-co-glycolide) (PLGA)/β-tricalcium phosphate (β-TCP) composites were synthesized through polymerization using microwave energy. The degradation behavior of the PLGA/β-TCP composites was carried out at 37 °C in a SBF without changing the solution in order to examine the effect of β-TCP on the degradation behavior. The changes in the molecular weight, mass, and morphology of the composites were examined with respect to the soaking time. An incubation time of 2 weeks was needed to degrade the β-TCP of the composites, indicating that degradation of β-TCP could be started when β-TCP was detached from the PLGA matrix or exposed from composites surface, caused by PLGA matrix was degraded into the SBF solution. The mass loss of the composites with respect to the soaking time revealed that PLGA transformed from a polymer to an oligomer as the degradation process proceeded. The whisker-like morphological changes, caused by the transformation and degradation of the polymer were observed in the composites after week 2. The degradation behavior of the PLGA/β-TCP composites was influenced by the β-TCP content in the composite, and the degradation rate of the composite could be controlled by the initial molecular weight of PLGA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号