首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Efficient intracellular delivery of rifampicin to alveolar macrophages using rifampicin-loaded PLGA microspheres: effects of molecular weight and composition of PLGA on release of rifampicin
Authors:Makino Kimiko  Nakajima Takehisa  Shikamura Mitsuhiko  Ito Fuminori  Ando Shizutoshi  Kochi Chie  Inagawa Hiroyuki  Soma Gen-Ichiro  Terada Hiroshi
Institution:Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki Noda, Chiba 278-8510, Japan. makino@rs.noda.tus.ac.jp
Abstract:Monodispersed PLGA microspheres containing rifampicin (RFP) have been prepared by solvent evaporation method using a Shirasu porous glass (SPG) membrane. The microspheres were spherical and their average diameter was about 2 microm. The loading efficiency of rifampicin was dependent on the molecular weight of PLGA. The higher loading efficiency was obtained by the usage of PLGA with the lower molecular weight, which may be caused by the interaction of the amino groups of rifampicin with the terminal carboxyl groups of PLGA. PLGA with the monomer compositions of 50/50 and 75/25, of lactic acid/glycolic acid, were used in this study. From rifampicin-loaded PLGA microspheres formulated using PLGA with the molecular weight of 20,000, rifampicin was released with almost constant rate for 20 days after the lag phase was observed for the initial 7 days at pH 7.4. On the other hand, from rifampicin-loaded PLGA microspheres formulated using PLGA with the molecular weight of 5000 or 10,000, almost 90% of rifampicin-loaded in the microspheres was released in the initial 10 days. Highly effective delivery of rifampicin to alveolar macrophages was observed by the usage of rifampicin-loaded PLGA microspheres. Almost 19 times higher concentration of rifampicin was found to be incorporated in alveolar macrophages when rifampicin-loaded PLGA microspheres were added to the cell culture medium than when rifampicin solution was added.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号