首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of the work was to develop a flexible in vitro synthesis procedure, which can be applied in order to study and predict the metabolic patterns of new derivatives of anabolic androgenic steroids (AAS) with respect to most prominent target compounds for doping control purposes. Microsomal and S9 fraction of human liver preparations were used as a source of metabolising enzymes and the co-substrates of the synthesis mixture were selected to favour phase-I metabolic reactions and glucuronidation as phase-II conjugation reactions. Model compounds within the study were 4,9,11-trien-3-one steroids, structural derivatives of gestrinone and trenbolone, which both are included in the list of prohibited compounds in sports by the World Anti-Doping Agency (WADA). The correlation between in vitro metabolism of human microsomes and in vivo excretion studies in human was compared with gestrinone and subsequently, the applicability of the in vitro model for prediction of AAS metabolic pathways for new doping agents was evaluated. All the AAS examined within this study were successfully metabolised using the developed in vitro model, hydroxylation, reduction and glucuronide conjugation being the most prominent reaction pathways. Hydroxylated and glucuronide-conjugated metabolites of in vivo experiment with gestrinone were the same metabolites formed in the enzyme-driven process, thus showing good in vitro-in vivo correlation. Liquid chromatographic-mass spectrometric and tandem mass spectrometric methods were developed, relying on the positive polarity of electrospray ionisation, which also allowed the direct detection of intact glucuronide-conjugated AAS metabolites. Due to charge delocalisation and high proton affinity, the developed method was proven effective in the analysis of AAS metabolites bearing extensive conjugated double bond systems in their structures.  相似文献   

2.
Suan‐Zao‐Ren granule is widely used to treat insomnia in China. However, because of the complexity and diversity of the chemical compositions in traditional Chinese medicine formula, the comprehensive analysis of constituents in vitro and in vivo is rather difficult. In our study, an ultra high performance liquid chromatography with quadrupole time‐of‐flight mass spectrometry and the PeakView® software, which uses multiple data processing approaches including product ion filter, neutral loss filter, and mass defect filter, method was developed to characterize the ingredients and rat serum metabolites in Suan‐Zao‐Ren granule. A total of 101 constituents were detected in vitro. Under the same analysis conditions, 68 constituents were characterized in rat serum, including 35 prototype components and 33 metabolites. The metabolic pathways of main components were also illustrated. Among them, the metabolic pathways of timosaponin AI were firstly revealed. The bioactive compounds mainly underwent the phase I metabolic pathways including hydroxylation, oxidation, hydrolysis, and phase II metabolic pathways including sulfate conjugation, glucuronide conjugation, cysteine conjugation, acetycysteine conjugation, and glutathione conjugation. In conclusion, our results showed that this analysis approach was extremely useful for the in‐depth pharmacological research of Suan‐Zao‐Ren granule and provided a chemical basis for its rational.  相似文献   

3.
Cui  Li  Xu  Fengjuan  Jiang  Jun  Sun  E.  Zhang  Zhenhai  Cheng  Xudong  Wang  Jing  Jia  Xiaobin 《Chromatographia》2014,77(17):1223-1234

Herba Epimedii (Epimedium) is a kind of tonic herb, widely used in China. Epimedin A is a major component of Herba Epimedii with bioactivities. Analysis of the metabolic profile in vivo plays a pivotal role in understanding how traditional Chinese medicine works. And the metabolites of epimedin A might influence the effects of Herba Epimedii. Moreover, the metabolic routes of epimedin A provide an important basis for safety evaluation. Until now, little has been known about the metabolism of epimedin A. The current study was designed to characterize the metabolic pathways of epimedin A in vivo. The metabolites in rat plasma, bile, feces, and urine were identified by UPLC/Q–TOF–MS analysis. A total of 27 metabolites from epimedin A were detected or tentatively identified. The major metabolic processes were hydrolysis, hydrogenation, hydroxylation, dehydrogenation, demethylation, and conjugation with glucuronic acid and different sugars. The present study revealed the metabolic pathways of epimedin A in rat for the first time, and epimedin A could undergo extensive phase I and phase II metabolism in rat. These findings would provide an important basis for the further study and clinical application of epimedin A. In addition, the results of this work have shown the feasibility of the UPLC/Q–TOF–MS approach for rapid and reliable characterization of metabolites.

  相似文献   

4.
Herba Epimedii (Epimedium) is a kind of tonic herb, widely used in China. Epimedin A is a major component of Herba Epimedii with bioactivities. Analysis of the metabolic profile in vivo plays a pivotal role in understanding how traditional Chinese medicine works. And the metabolites of epimedin A might influence the effects of Herba Epimedii. Moreover, the metabolic routes of epimedin A provide an important basis for safety evaluation. Until now, little has been known about the metabolism of epimedin A. The current study was designed to characterize the metabolic pathways of epimedin A in vivo. The metabolites in rat plasma, bile, feces, and urine were identified by UPLC/Q–TOF–MS analysis. A total of 27 metabolites from epimedin A were detected or tentatively identified. The major metabolic processes were hydrolysis, hydrogenation, hydroxylation, dehydrogenation, demethylation, and conjugation with glucuronic acid and different sugars. The present study revealed the metabolic pathways of epimedin A in rat for the first time, and epimedin A could undergo extensive phase I and phase II metabolism in rat. These findings would provide an important basis for the further study and clinical application of epimedin A. In addition, the results of this work have shown the feasibility of the UPLC/Q–TOF–MS approach for rapid and reliable characterization of metabolites.  相似文献   

5.
5‐O‐Methylvisammioside is one of major chromones of Radix Saposhnikoviae possessing definite pharmacological activities, but there are few reports with respect to the metabolism of 5‐O‐methylvisammioside. In this work, metabolites in vivo were explored in male Sprague‐Dawley rats and in vitro investigated on rat intestinal bacteria incubation model and were identified by using ultra high performance liquid chromatography/quadrupole time‐of‐flight mass spectrometry. An online data acquisition method based on a multiple mass defect filter and dynamic background subtraction was developed to trace all probable metabolites. As a result, 26 metabolites in vivo (including 18, 15, 10, and 10 in rat urine, faece, bile, and blood) and 7 metabolites in vitro were characterized, respectively. Additionally, the main metabolic pathways in vivo and in vitro, including deglycosylation, deglycosylation + demethylation, deglycosylation + oxidation, N‐acetylation, and sulfate conjugation, were summarized by calculating the relative content of each metabolite. The obtained results significantly enriched our knowledge about 5‐O‐methylvisammioside metabolism and will lead to a better understanding of its safety and efficacy.  相似文献   

6.
Cui L  Chan W  Wu JL  Jiang ZH  Chan K  Cai Z 《Talanta》2008,75(4):1002-1007
Metabolism and pharmacokinetic studies on rat were conducted for lithospermic acid B, one of the components from Radix Salviae Miltiorrhizae (danshen) that shows many bioactivities. Liquid chromatography-electrospray ionization mass spectrometry method was applied for the determination of lithospermic acid B and its metabolites in samples from in vitro and in vivo metabolism studies. Rat plasma samples collected after intravenous administration were analyzed for obtaining pharmacokinetic data of lithospermic acid B. Four O-methylated metabolites, namely one monomethyl-, two dimethyl- and one trimethyl-lithospermic acid B, were detected when lithospermic acid B was incubated in rat hepatic cytosol. These four metabolites were also detected in rat bile, plasma and feces samples after intravenous administration of lithospermic acid B. The in vitro and in vivo results indicate that the methylation is the main metabolic pathway of lithospermic acid B. The danshen component and its methylated metabolites were excreted to rat bile and feces.  相似文献   

7.
The use of selective oestrogen receptor modulators has been prohibited since 2005 by the World Anti-Doping Agency regulations. As they are extensively cleared by hepatic and intestinal metabolism via oxidative and conjugating enzymes, a complete investigation of their biotransformation pathways and kinetics of excretion is essential for the anti-doping laboratories to select the right marker(s) of misuse. This work was designed to characterize the chemical reactions and the metabolizing enzymes involved in the metabolic routes of clomiphene, tamoxifen and toremifene. To determine the biotransformation pathways of the substrates under investigation, urine samples were collected from six subjects (three females and three males) after oral administration of 50 mg of clomiphene citrate or 40 mg of tamoxifen or 60 mg of toremifene, whereas the metabolizing enzymes were characterized in vitro, using expressed cytochrome P450s and uridine diphosphoglucuronosyltransferases. The separation, identification and determination of the compounds formed in the in vivo and in vitro experiments were carried out by liquid chromatography coupled with mass spectrometry techniques using different acquisition modes. Clomiphene, tamoxifen and toremifene were biotransformed to 22, 23 and 18 metabolites respectively, these phase I reactions being catalyzed mainly by CYP3A4 and CYP2D6 isoforms and, to a lesser degree, by CYP3A5, CYP2B6, CYP2C9, CYP2C19 isoforms. The phase I metabolic reactions include hydroxylation in different positions, N-oxidation, dehalogenation, carboxylation, hydrogenation, methoxylation, N-dealkylation and combinations of them. In turn, most of the phase I metabolites underwent conjugation reaction to form the corresponding glucuro-conjugated mainly by UGT1A1, UGT1A3, UGT1A4, UGT2B7, UGT2B15 and UGT2B17 isoenzymes.  相似文献   

8.
The use of in vitro drug metabolism data in the understanding of in vivo pharmacokinetic, safety and toxicity data has become a large area of scientific interest. This has stemmed from a trend in the pharmaceutical industry to use in vitro data generated from human tissue as a criterion to select compounds for further investigation. As well as measuring metabolic stability in vitro using human liver microsomal preparations, the identification of possible metabolite(s) formed may play a vital role in Hit-to-Lead and Lead optimisation processes. The data-dependent scan function mode with the ion-trap instrumentation provides the ability to measure the metabolic stability and identification of possible metabolites of a compound. A gradient liquid chromatographic method with a run time of 6 min/injection was developed for this purpose. The approach of simultaneous metabolic stability measurements and rapid identification of metabolites of drugs with high (verapamil), medium (propranolol and cisapride) and low (flunarazine) metabolic stabilities using ion-trap mass spectrometry is described. The metabolites identified after 15 min incubation for verapamil, propranolol and cisapride are in good agreement with those reported as the major metabolites in human in vivo studies.  相似文献   

9.
Celastrol has attracted great attention owing to its anti-arthritis, antioxidant, and anticancer activities. Nevertheless, its metabolism in vivo (rats) and in vitro (rat liver microsomes and intestinal flora) has not been comprehensively characterized. In this study, ultra-high-performance liquid chromatography coupled with hybrid triple quadrupole time-of-flight mass spectrometry was used as a rapid and sensitive approach for studying the metabolism of celastrol in vivo and in vitro. A total of 43 metabolites were identified and characterized. These include 26 metabolites in vivo, and 28 metabolites in vitro (nine metabolites in rat liver microsomes and 24 metabolites in rat intestinal flora). Additionally, the celastrol-biotransformation capacity of the intestinal tract was confirmed to exceed that of the liver. Furthermore, the metabolic profile of celastrol is summarised. The information obtained from this study may provide a basis for understanding the pharmacological mechanisms of celastrol and will be beneficial for clinical applications.  相似文献   

10.
In this study, a reliable and sensitive ultra‐high performance liquid chromatography coupled with fourier transform ion cyclotron resonance mass spectrometry method was developed for the systematic study of the metabolic profile of Kudiezi injection in rat plasma, bile, urine, and feces after intravenous administration of a single dose. The chromatographic separation was performed on an Agilent Eclipse Plus C18 column (4.6 mm × 50 mm, 1.8 μm) and the identification of prototype components and metabolites was achieved on a Bruker Solarix 7.0 T ultra‐high resolution spectrometer in negative ion mode. Results indicated that a total of 76 constituents including 29 prototype compounds and 47 metabolites (10 phase I metabolites and 37 phase II metabolites) were tentatively identified. And the metabolic pathways of these prototype compounds including hydroxylation, dehydrogenation, glucuronidation, and sulfate conjugation. In conclusion, the developed method with high resolution and sensitivity was effective for screening and identification of prototypes and metabolites of Kudiezi injection in vivo. Moreover, these results would provide significant information for further pharmacokinetic and pharmacological research of Kudiezi injection in vivo.  相似文献   

11.
3,4-Dicaffeoylquinic acid (3,4-DiCQA) is a dicaffeoylquinic acid that possesses antioxidant, anti-inflammatory, antibacterial, antiviral, anticancer, hypoglycemic, hypotensive, and hepatoprotective activities. This study developed a rapid and reliable method using ultra-high performance liquid chromatography equipped with linear ion trap-Orbitrap MS to identify the metabolites of 3,4-DiCQA in rat plasma, urine, feces, and tissues. The metabolic profile of 3,4-DiCQA was determined after an oral administration of 200 mg/kg to rats. A strategy of full scan-parent ions list acquisition coupled to diagnostic product ion analysis for screening and identification of target metabolites was used. A total of 67 metabolites, combined with accurate mass measurement, diagnostic ions, neutral losses, and reference standards, were observed and characterized for the first time. The results indicated that hydrolysis, methylation, hydrogenation, hydration, dehydroxylation, dehydrogenation, sulfate conjugation, and glucuronide conjugation were the major metabolic reactions of 3,4-DiCQA in vivo.  相似文献   

12.
As the most important marker component in Carthamus tinctorius L., hydroxysafflor yellow A (HSYA) was widely used in the prevention and treatment of cardiovascular diseases, due to its effect of improving blood supply, suppressing oxidative stress, and protecting against ischemia/reperfusion. In this paper, both an in vitro microsomal incubation and an in vivo animal experiment were conducted, along with an LC‐Q‐TOF/MS instrument and a 3‐step protocol, to further explore the metabolism of HSYA. As a result, a total of 10 metabolites were searched and tentatively identified in plasma, urine, and feces after intravenous administration of HSYA to male rats, although no obvious biotransformation was found in the simulated rat liver microsomal system. The metabolites detected involving both phase I and phase II metabolism including dehydration, deglycosylation, methylation, and glucuronic acid conjugation. A few of the metabolites underwent more than one‐step metabolic reactions, and some have not been reported before. The study would contribute to a further understanding of the metabolism of HSYA and provide scientific evidence for its pharmacodynamic mechanism research and clinical use.  相似文献   

13.
H3B-6545 is a selective ERα covalent antagonist, which has been demonstrated to be effective in anti-tumor. To fully understand its mechanism of action, it is necessary to investigate the in vitro and in vivo metabolic profiles. For in vitro metabolism, H3B-6545 (50 μM) was incubated with the hepatocytes of rat and human for 2 h. For in vivo metabolism H3B-6545 was orally administered to rats at a single dose of 10 mg/kg, and plasma, urine and fecal samples were then collected. All samples were analyzed by using ultra-high performance liquid chromatography combined with linear ion trap-orbitrap tandem mass spectrometry (UHPLC-LTQ-Orbitrap-MS) operated in positive ion mode. The structures of the metabolites were elucidated by comparing their MS and MS2 spectra with those of parent drug. A total of 11 metabolites, including a GSH adduct, were detected and structurally identified. M2, M7 and M8 were further unambiguously identified by using reference standards. Among these metabolites, M1, M5, M7 and M10 were newly found and reported for the first time. The metabolic pathways of H3B-6545 included deamination (M8 and M9), dealkylation (M2, M3 and M10), N-hydroxylation (M6), hydroxylation (M1 and M4), formation of amide derivatives (M5 and M7) and GSH conjugation (G1).  相似文献   

14.
Meisoindigo has been a routine therapeutic agent in the clinical treatment of chronic myelogenous leukemia in China since the 1980s. However, information relevant to in vivo metabolism of meisoindigo is absent so far. In this study, in vivo circulatory metabolites of meisoindigo in rat plasma, as well as excretory metabolites in rat urine and feces, were identified by liquid chromatography/tandem mass spectrometry (LC/MS/MS). Integration of multiple reaction monitoring with conventional metabolic profiling methodology was adopted to enable a more sensitive detection of in vivo metabolites. By comparing with the MS/MS spectra and retention times of the in vitro reduced metabolites, the major metabolites in rat plasma were proposed to form from 3,3′ double bond reduction, whereas the minor metabolites were formed from reduction followed by N‐demethylation, and reduction followed by phenyl mono‐oxidation. The major metabolites in the rat urine were proposed to form from reduction followed by phenyl mono‐oxidation, and its glucuronide conjugation and sulfate conjugation, whereas the minor metabolites were formed from 3,3′ double bond reduction, N‐demethylation, reduction followed by N‐demethylation, phenyl di‐oxidation, phenyl mono‐oxidation and its glucuronide conjugation and sulfate conjugation. The major metabolites in the rat feces were proposed to form from reduction followed by phenyl mono‐oxidation, whereas the minor metabolites were formed from reduction followed by N‐demethylation, and reduction followed by phenyl di‐oxidation. The phase I metabolic pathways showed a significant in vitro–in vivo correlation in rat. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
The in vitro and in vivo metabolism of a novel PDE 5 inhibitor, SK3530, was investigated in rats. Bile, plasma, feces, urine and liver samples were collected and analyzed using a high-performance liquid chromatography (HPLC) system equipped with ultraviolet (UV), mass spectrometric and radioactivity detectors. After a single oral administration, the mean radiocarbon recovery was 92.32+/-6.26%, with 91.25+/-6.25 and 1.07+/-0.21% in the feces and urine, respectively. The biliary excretion of radioactivity for the first 24 h period was approximately 38.82%, suggesting that SK3530 is cleared by hepatobiliary excretion. In vitro incubation of SK3530 with rat and human liver microsomes resulted in the formation of twelve and ten metabolites, respectively. SK3530 was extensively metabolized to twenty different metabolites, including three glucuronide and three sulfate conjugates in rats. The structures of these metabolites were elucidated based on MSn spectral analyses. Six major metabolic pathways were identified in the rat: N-dealkylation and oxidation of the hydroxyethyl moiety; N,N-deethylation and hydroxylation of the piperazine ring; hydroxylation of the propyl group and sulfate conjugation. An additional metabolite due to aromatic hydroxylation was also identified in hepatic microsomes.  相似文献   

16.
Fan  Min  Peng  Chongsheng  Peng  Ying  Zhang  Min  Li  Xiaobo 《Chromatographia》2016,79(23):1593-1604

This study aimed to investigate the metabolism of anthraquinones, including chrysophanol (1), rhein (2), aloe-emodin (3), emodin (4), sennoside A (5) and sennoside B (6), by mixed human fecal bacteria to clarify the relationship between their chemical structural characteristics and intestinal metabolism. Six parent compounds were incubated with mixed human fecal bacteria in vitro to study the metabolic process. A highly sensitive and specific ultra-performance liquid chromatography-quadrupole time-of-flight high-resolution tandem mass spectrometry (UPLC-Q-TOF-HRMS/MS) with MSE technology and MetaboLynx software has been developed to analyze the metabolites of anthraquinones. With this method, a total of ten metabolites were identified, including 1,4,8-trihydroxy-3-hydroxymethylanthraquinone (M1), 2-methylrhein (M2), 7-methylrhein (M3), methyl-esterificated rhein (M4), 1,8-dihydroxy-3-hydroxymethyl-4-methylanthraquinone (M5), physcion (M6), sennidin A (M7), rhein (M8), sennidin B (M9) and rhein (M10), six (M1–M6) of which were first detected on the basis of the exact mass by mixed human fecal bacteria in this work. The metabolism of anthraquinones occurred via hydroxylation, oxidation, methylation, deglycosylation and esterification. In particular, the methyl-esterificated rhein (M4) was first identified as one of the metabolites of rhein, whose metabolic pathway (esterification) is also reported for the first time. The presence of human fecal bacteria played a vital role in the metabolism of anthraquinones and the substitutional groups determined the different metabolic reactions for anthraquinones, which will be useful for the investigation of the study of anthraquinones in vivo.

  相似文献   

17.
A sensitive and rugged LC/MSMS method was developed for a comprehensive in vitro metabolic interaction screening assay with N-in-1 approach reported earlier. A cocktail consisting of ten cytochrome P450 (CYP)-selective probe substrates with known kinetic, metabolic and interaction properties in vivo was incubated in a pool of human liver microsomes, and metabolites of melatonin (CYP1A2), coumarin (CYP2A6), bupropion (CYP2B6), amodiaquine (CYP2C8) tolbutamide (CYP2C9), omeprazole (CYP2C19 and CYP3A4), dextromethorphan (CYP2D6), chlorzoxazone (CYP2E1), midazolam (CYP3A4) and testosterone (CYP3A4) were simultaneously analysed with a single LC/MSMS run. Altogether, 13 metabolites and internal standard phenacetin were analysed in multiple reaction mode. Polarity switching mode was utilized to acquire negative ion mode electrospray data for hydroxychlorzoxazone and positive ionization data for the rest of the analytes. Fast gradient elution was applied, giving total injection cycle of 8 min. The method was modified for two different LC/MSMS systems, and was validated for linear range, detection limit, accuracy and precision for each metabolite. In addition, cocktail inhibition system was further tested using monoclonal anti-CYP antibodies as inhibitors for each probe reaction.  相似文献   

18.
Betulinic acid is a triterpenoid organic acid with remarkable antitumor properties and is naturally present in many fruits, condiments and traditional Chinese medicines. Currently, a strategy was developed for the identification of metabolites following the in vivo and in vitro biotransformation of Betulinic acid with rat intestinal bacteria utilizing ultra high performance liquid chromatography with time‐of‐flight mass spectrometry with polymeric solid‐phase extraction. As a result, 46 metabolites were structurally characterized. The results demonstrated that Betulinic acid is universally metabolized in vivo and in vitro, and Betulinic acid could undergo general metabolic reactions, including oxidation, methylation, desaturation, loss of O and loss of CH2. Additionally, the main metabolic pathways in vivo and in vitro were determined by calculating the relative content of each metabolite. This is the first study of Betulinic acid metabolism in vivo, whose results provide novel and useful data for better understanding of the safety and efficacy of Betulinic acid.  相似文献   

19.
The metabolic fate of the emerging drug candidate S107, possessing the potential for misuse as performance-enhancing agent in sports, was investigated by in vitro phase I and II experiments with human microsomal and S9 liver enzymes. The metabolites were identified by liquid chromatography-mass spectrometry with electrospray ionisation in positive mode (LC-ESI-MS/MS). Their collision-induced dissociation behaviour was studied by high-resolution/high accuracy Orbitrap MS(n) analysis, supported by stable isotope labelling, H/D-exchange experiments and density functional theory calculations. Monooxygenation accounted for the main phase I metabolic transformation due to N- and S-oxidation of the 1,4-benzothiazepine core, as substantiated by chemical synthesis, selective reduction methods and characteristic APCI in source fragmentation behaviour of the metabolites. Another dominant metabolic pathway was demethylation, yielding the N- and O-demethylated metabolite, respectively. The latter was further conjugated by glucuronidation as well as sulfonation in subsequent phase II metabolic reactions, whereas the N-demethylated metabolite was not amenable to conjugation. The active drug molecule itself was converted to two glucuronic acid conjugates, which are proposed to consist of two quaternary S107-N(+)-glucuronide isomers. All glucuronides were susceptible to enzymatic hydrolysis with β-glucuronidase (Escherichia coli). A comprehensive LC-ESI-MS(/MS)-based detection method for urine was developed and its fitness for purpose was assessed. The assay can serve as a potential screening and/or confirmation method for S107 in clinical drug testing and doping control analysis in the future.  相似文献   

20.
Isochlorogenic acid A is widely present in fruits, vegetables and herbal medicines, and is characterized by anti‐inflammatory, hepatoprotective and antiviral properties. However, little is known about its metabolic fate and pharmacokinetic properties. This study is thus designed to investigate the metabolic fate of isochlorogenic acid A. An analytical method based on high‐performance liquid chromatography/quadrupole time‐of‐flight mass spectrometry (HPLC/Q‐TOF MS) was established to characterize the metabolites of isochlorogenic acid A in the plasma, urine and feces of rats. A total of 32 metabolites were identified. The metabolic pathways mainly include hydrolyzation, dehydroxylation, hydrogenation and conjugation with methyl, glucuronic acid, glycine, sulfate, glutathione and cysteine. Moreover, the pharmacokinetic profiles of all the circulating metabolites were investigated. M11 resulting from hydrolyzation, dehydroxylation and hydrogenation was the dominant circulating metabolite after the intragastric administration of isochlorogenic acid A. The results obtained will be useful for further study of elucidating potential bioactive metabolites which can provide better explanation of the pharmacological and/or toxicological effects of this compound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号