首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this work is to characterize the mechanical behavior of blends of polycarbonate (PC) and acrylonitrile-butadiene-styrene (ABS) during monotonic and cyclic loading. Compression experiments were performed using a SHIMADZU universal testing machine (10−4 to 10−2 s−1) and a split Hopkinson pressure bar (1600–5000 s−1), with, the test temperatures ranging from 293 to 353 K. The influence of the rate and temperature on the deformation of PC/ABS is discussed in detail. Based on the investigation of numerous constitutive models, a phenomenological model called DSGZ was chosen to describe the compression behavior of PC/ABS. This model could not accurately reproduce the deformation of polymers at high strain rates when utilizing the same material coefficients for the low and high strain–rate deformations. In addition, this model was unable to capture the deformation features during unloading and subsequent reloading when adopting the original stress–strain updating algorithm. Hence, some improvements to the model have been implemented to better predict the deformation. Finally, the model predictions are shown to be consistent with the experimental results.  相似文献   

2.
研究了聚碳酸酯(PC)和PC/ABS高分子材料的疲劳裂纹扩展规律,利用改进柔度法测量其裂纹扩展速率,采用扫描电子显微镜(SEM)观察其断口形貌,分析疲劳裂纹扩展机理.在较大裂纹扩展速率(10-6~10-3mm/cycle)范围内,PC/ABS的疲劳裂纹扩展速率可以用Paris公式da/dN=9·5587×10-5(ΔK)2·88381来描述.高分子材料PC的疲劳裂纹扩展速率约为高分子材料PC/ABS的3倍.高分子材料PC/ABS疲劳裂纹面上的特征以韧窝为主,较低裂纹扩展速率对应较小的韧窝,较高裂纹扩展速率对应较大的韧窝.高分子材料PC疲劳裂纹面有明显的不连续裂纹扩展带,其裂纹面相对较平.  相似文献   

3.
Multiaxial stress-controlled and mixed stress-strain-controlled cyclic tests were carried out to investigate the multiaxial ratchetting of polycarbonate (PC) polymer at room temperature. The effects of applied mean stress, stress amplitude, loading rate, loading path and loading history on the ratchetting are discussed. The results show that the multiaxial ratchetting mainly occurs in the direction of non-zero mean stress. In the multiaxial stress-controlled cases, the ratchetting strain increases with increasing mean stress and stress amplitude and decreasing stress rate. Different values of ratchetting strain were obtained in the multiaxial cyclic tests with seven different loading paths, and prior cyclic loading with higher stress level resulted in decreased ratchetting in the subsequent cyclic loading with lower stress level. In the multiaxial mixed stress-strain-controlled tests, the ratchetting increased with increasing axial (or equivalent shear) stress and torsional-angle (or axial-displacement) amplitude and decreasing applied deformation rate.  相似文献   

4.
PC/ABS及PC/ABS/PE-g-MAH共混体系相容性的研究   总被引:18,自引:1,他引:17  
研究了聚碳酸酯与ABS(PC/ABS)及PC/ABS与马来酸酐接枝聚乙烯共聚物(PC/ABS/PE-g-MAH)共混体系的力学性能和应力开裂性能。用DSC和SEM研究了共混体系的相容性。结果表明:ABS的加入能提高PC的冲击强度,ABS的含量及品种影响PC/ABS合金的力学性能,ABS能提高PC的耐溶剂应力开裂性能。PC/ABS/PE-g-MAH共混体系的力学性能和相容性优于PC/ABS共混体系,  相似文献   

5.
PC/ABS thermoplastic blends are widely employed in manufacturing sectors, as it yields good mechanical behavior when subjected to dynamic loading conditions. While investigating the fundamental nature of PC/ABS blends, ultrasonic welding process appears to suit their joining as compared to other conventional techniques. This paper focuses on PC/ABS welding using ultrasonic and the subsequent investigation from the insight of thermal science. It is imperative for the materials to retain key properties after subjecting it to welding. Examinations to evaluate these properties through DSC reveal a lower onset temperature change and a small variation of glass transition temperature, respectively, for parts which indicate minimal changes in thermal properties in welded and non-welded specimens. Apparent activation energies determined from TG data are practically independent of heating rates, which suggests that the most important process in the degradation of these materials corresponds to ABS. Those mixtures with high PC content show a clear increase in apparent activation energies with heating rate, suggesting that the thermal degradation mechanism of these samples is composed of several complex processes, each predominant during different stages of the overall process. SEM is used to investigate the structural morphology of the welded parts.  相似文献   

6.
After uniaxial tension and creep tests, asymmetric stress cycle tests have been performed on two polycarbonate (PC) materials with different molecular weights at room temperature. The effects of stress level (mean stress and stress amplitude) and time-dependent factors (stress rate and peak hold time) on ratcheting were studied. To separate the contributions of viscous recovery and accumulated unrecoverable deformation, a new test procedure has been proposed and performed on polycarbonate. The results demonstrate that the proposed test procedure is suitable for separating the viscous recovery and accumulated unrecoverable deformation. The study clearly shows that, for PC, both the viscous recovery and the accumulated unrecoverable deformation cannot be neglected for cyclic loading; previous viscous deformation has significant influence on the following cyclic accumulated deformation.  相似文献   

7.
Mechanical rejuvenation is known to dramatically alter the deformation behavior of amorphous polymers. Polystyrene (PS)—for example, typically known as a brittle polymer—can be rendered ductile by this treatment, while a ductile polymer like polycarbonate (PC) shows no necking anymore and deforms homogeneously in tensile deformation. The effects are only of temporary nature, as because of physical aging the increasing yield stress, accompanied by intrinsic strain softening, renders PS brittle after a few hours, while for PC necking in tensile testing returns in a few months after the mechanical rejuvenation treatment. In this study, it is found that physical aging upon rejuvenation in both PS and PC can be delayed in two different ways: (1) by reducing the molecular mobility through antiplasticization and (2) by applying toughening agents (rubbery core–shell particles). For the first route, even though progressive aging is found to decrease with increasing amounts of antiplasticizer added, dilution of the entanglement network results in enhanced brittleness. Besides antiplasticization effects, also some typical plasticization effects are observed, like a reduction in matrix Tg. For the second route, traditional rubber toughening using acrylate core–shell modifiers also results in a reduced yield stress recovery, and ductile tensile deformation behavior is observed even 42 months after mechanical rejuvenation. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 134–147, 2008  相似文献   

8.
The long-term performance of polymers under cyclic loading is important for safety assessments in engineering applications. The deformation process under the cyclic loading can be accelerated through use of temperature and stress. As for asymmetric cyclic loading, so called ratcheting, a time-temperature-stress (TTS) equivalence method in which all the parameters have clear physical meanings and can be determined experimentally, was proposed to predict the long-term cyclic loading behavior for polycarbonate using short-term data. Taking into consideration the effects of both the mean stress and the stress amplitude, the ratcheting compliance was defined and its evolution function was also provided. Next, the TTS equivalence method was validated using the long-term ratcheting test results for the polycarbonate. Time, temperature, and stress do show equivalent effects on long-term ratcheting of polycarbonate. Using the proposed method, time and cost can be dramatically saved for the assessment of the long-term cyclic loading performance of polycarbonate.  相似文献   

9.
The fatigue crack propagation (FCP) behavior of the alloy of polycarbonate (PC) and acrylonitrile-butadiene-styrene (PC/ABS) is experimentally investigated in this paper. An improved compliance method is employed to measure the fatigue crack length and optical and scanning electron microscopes (SEM) are used to observe the features of crack tip deformation in situ. ‘Tail’ phenomenon has been observed at the initial stage of fatigue for each specimen, which is regarded as a reflection of the transition process of accumulation of damage and plastic deformation during FCP. The law of FCP from low to high crack growth rate (10−6-10−3 mm/cycle) is obtained and described with Paris law. Porous or dimple features govern the fatigue crack surfaces and coarse features have been seen on the crack surfaces with higher crack growth rate, while smooth features have been observed on the crack surfaces with lower crack growth rate. A stretched band appears when the crack growth transforms from lower to higher region of FCP rate.  相似文献   

10.
几种高聚物拉伸过程中的声发射现象   总被引:1,自引:0,他引:1  
研究了4种塑料PS、POM、ABS和PC拉伸过程中的声发射现象,发现声发射信号主要产生在屈服前和断裂时,说明高聚物的声发射信号主查由于分子链的解缠结,晶体的滑移裂纹的亚临界扩展和分子链的断裂等诸因素产生的,ABS拉伸时大面积银纹的生成也可能是信号源,拉伸应变速率,材料的结构和不同的屈服过程等对塑料的拉伸声发射规律有较大影响。  相似文献   

11.
Summary : With the aid of layer multiplying coextrusion techniques, polymer composites comprising up to thousand of uniform and alternating layers polyethylene terephthalate (PET) and polycarbonate (PC) were produced. Morphology and micromechanical deformation processes in these composites were investigated by means of transmission electron microscopy (TEM) and atomic force microscopy (AFM). In particular, the effect of thickness of individual layers on the large strain deformation micromechanisms was analyzed. On decreasing the thickness of individual polymer layers, a transition in deformation mechanism from two-component behaviour (i.e. the localization of shear bands in individual layer) to one-component-like behaviour (with the shear bands passing unhindered through different layers) was observed at the layer thickness of ca. 1 µm. On further decreasing the layer thickness below 100 nm, the composites exhibited homogeneous plastic deformation (i.e. no localization of deformation). In contrast to pure PET, even after long annealing, the composites showed tough behaviour during tensile loading.  相似文献   

12.
In this study, an experimental investigation is performed to observe the electromechanical response of CB (carbon black)/Acrylonitrile butadiene styrene (ABS) additive manufactured composite under quasi-static (tensile, shear, and mode-I fracture) and dynamic (mode-I fracture) loading conditions for the potential damage sensing applications. Dog bone tensile, double v-notch shear, and single edge notch bending (SENB) specimen printed with three different configurations (0°/90°, +45°/-45°, and 0°) are considered for the quasi-static condition. A modified split Hopkinson pressure bar along with high-speed video camera is used for dynamic fracture experiments. Four-point probe technique coupled with a high-resolution data acquisition system is employed to obtain the real-time electrical response. In the case of tensile loading, +45°/-45° printed specimens show a nonlinear change of electrical resistance due to unique failure mode. Under the shear loading, electrical resistance remains unchanged during the elastic deformation. After the damage evolution, +45°/-45° printed specimens exhibit a higher rate of change in electrical resistance due to alignment of the filaments along the maximum principle shear stress direction. For both static and dynamic fracture loading, a minimal change of electrical resistance is observed before crack initiation. However, after the crack initiation, a sharp change of electrical resistance for 0°/90° printed specimens indicates a faster crack propagation as compared to the +45°/-45° printed specimens.  相似文献   

13.
Rockwell C diamond indenter with a spherical tip of radius of 108 μm was used to slide on bulk polycarbonate under linearly increasing normal load from 5 mN to 20 N in order to investigate deformation and damage of ductile polymers during scratching. The peak value of the ratio of residual depth over penetration depth corresponds to a critical normal load, which can be used as the piecewise point for the subsection functions describing variation of tangential load, penetration depth and residual depth with normal load. The true adhesion interfacial friction coefficient was found to be 0.3 for contact between PC and diamond by three-dimensional model. Residual groove widths were found to be proportional to the square root of normal load, and provided useful information to characterize the radius of spherical tip. Values of fracture toughness of PC obtained by scratch-based methodologies under sufficiently large normal loads associated with brittle fracture and crack plane, are in excellent agreement with literature values. The material is under triaxial compressive stress state, making the flow and shear stresses much larger than the ones for uniaxial tensile test.  相似文献   

14.
The aim of this work, within the framework of polymer recycling, is to upgrade waste from electrical and electronic equipment. Blends of the two major residues were prepared via a melt blending process. These are ABS consisting of a SAN thermoplastic matrix with a dispersed elastomeric (polybutadiene rubber) component and polycarbonate (PC). The effect of partial miscibility and previous degradation levels was investigated. Mechanical characterization of ABS/PC systems was carried out to determine the optimum composition range. Previous degradation levels of the two wastes were investigated by FTIR and little degradation was found on ABS due to the presence of a polybutadiene rubber which is more sensitive to thermo-oxidative processes but no significant degradation was found on PC. Differential scanning calorimetry (DSC) tests demonstrated certain miscibility between the two components by identifying two glass transition temperatures. This partial miscibility, together with the small degradation of the elastomeric component, contributes to a low interaction promoting a decrease on mechanical performance. Scanning electron micrographs (SEM) showed the system morphology and certain lack of adherence along SAN/polybutadiene interface related to degradation of polybutadiene spheres which act as stress concentrators. The use of the equivalent box model (EBM) allowed to quantify the interaction level by determining an interaction/adherence parameter “A”, which turned to be lower than 1 and corroborated the lack of interaction.  相似文献   

15.
Synthesis and applications of biscyclic phosphorus flame retardants   总被引:1,自引:0,他引:1  
The influence of structural effects of organo-phosphorus flame retardants (FRs) on their flame retardant action was investigated. A series of spirobisphosphorus compounds including 3,9-dibutyl-3,9-dioxo-2,4,8,10-tetraoxa-3,9-diphosphaspiro-5,5-undecane were prepared using various synthetic methods such as the Arbuzov reaction. The chemical structure of the product was confirmed by 1H and 31P NMR. Thermogravimetric analysis (TGA) results reveal that these cyclic phosphorus compounds show a single step degradation in the range of 250-400 °C and act in the gas phase rather than in the condensed phase. The obtained products were blended with an acrylonitrile-butadiene-styrene copolymer (ABS) or polycarbonate (PC) and their flame retardant behavior was evaluated using a UL-94 vertical test. V-0 ratings are achieved at 15-35 wt% loading of FR for ABS and at a much lesser amount of loading for PC. In both cases, it is apparent that the flame retardancy is strongly dependent on the P content of the flame retardant.  相似文献   

16.
The flame retardancy mechanisms of a novel polyhedral oligomeric silsesquioxane containing 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO‐POSS) in polycarbonate/acrylonitrile‐butadiene‐styrene (PC/ABS) blends are discussed. The thermal stability of PC/ABS composites with different DOPO‐POSS loadings are investigated by TGA and the enhancement of the thermal stability could be found at high temperature range. Their fire behavior is tested by the LOI, UL‐94, and cone calorimeter. Excellent flame retardancy of PC/ABS composites have been discovered with 10 wt% DOPO‐POSS loading. TGA‐FTIR, FTIR, XPS, and SEM, respectively, are used to characterize the gaseous products and the condensed residue in thermal decomposition, and the micro‐structure of the chars from cone calorimeter tests. The decomposition of PC/ABS with 10 wt% DOPO‐POSS shows significant changes compared with PC/ABS by TGA, FTIR, TGA‐FTIR, and XPS analysis. The enhancement of the thermal‐oxidative stability of PC/ABS with DOPO‐POSS is attributed to the interaction between DOPO‐POSS and PC/ABS at high temperature, which might be the key for improvement of the flame retardancy. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
The pyrolysis of polycarbonate (PC) and PC/acrylonitrile-butadiene-styrene (PC/ABS) with and without arylphosphates (triphenylphosphate TPP, resorcinol-bis(diphenyl phosphate) RDP and bisphenol A bis(diphenyl phosphate) BDP) is investigated by thermal analysis as key to understanding the flame retardancy mechanisms and corresponding structure–property relationships. The correspondence between the decomposition temperature range of arylphosphates and PC is pointed out as prerequisite for the occurrence of the reaction between arylphosphate and structures that are typical for the beginning of PC decomposition. Resulting cross-linking enhances charring in the condensed phase and competes with the alternative release of phosphate in the gas phase and thus flame inhibition. Flame inhibition was identified as the main flame retardancy mechanism. The additional condensed phase mechanisms optimise the performance.  相似文献   

18.
The properties and structure of Bisphenol A polycarbonate (PC) under hydrothermal aging were investigated. The results of mechanical testing indicate that there is obvious elongation at break on the curve of PC samples before hydrothermal aging and no elongation at break after aging. After aging, the bending strength and the tensile strength of PC increase. According to scanning electron microscopy photographs of fracture surfaces, after hydrothermal aging, there are many fragments linked to the fracture surface and the length of deformation at break disappears. Differential scanning calorimetry analysis shows that the glass transition temperature (Tg) of polycarbonate increases after hydrothermal aging. Fourier transform infrared spectroscopy shows hydrolytic degradation after hydrothermal aging.  相似文献   

19.
The interfacial fracture toughness between polycarbonate (PC) and poly(styrene-co-acrylonitrile) (SAN) bilayers was measured using an asymmetric double cantilever beam geometry. The effects on fracture toughness of oligomer content and copolymer composition were investigated. Results showed that by removing residual oligomers from SAN, the fracture toughness of the PC/SAN interface was increased significantly. To study this effect in more detail, benzonitrile was used as a model oligomer and added in controlled amounts to pure SAN before attaching to PC and annealing. The PC/SAN interfacial fracture toughness in this case decreased monotonically with increasing benzonitrile content presumably due to migration of the small molecule to the interface. Interfacial toughness was also measured for five purified SAN materials with a range of 17–31 wt % acrylonitrile. A maximum in PC/SAN toughness was seen for a 24 % AN material. Evidence of possible chain scission during fracture in purified SAN and PC was observed from x-ray photoelectron spectroscopy measurements. Optical microscopy showed that a single craze ahead of the crack is a possible failure mode during fracture of the SAN/PC interface. © 1993 John Wiley & Sons, Inc.  相似文献   

20.
A series of organo phosphorus flame retardants (FR) based on cyclic phosphates were synthesized in an attempt to find an efficient FR for polycarbonate (PC) and acrylonitrile-butadiene-styrene copolymer (ABS). The success of synthesis was confirmed by FT-IR and 1H and 31P NMR. Their thermal stability and flame-retarding efficiency as a single component additive were investigated and compared with those of aromatic based phosphate, resorcinol bis(diphenyl phosphate) (RDP). Thermogravimetric analysis (TGA) results reveal that cyclic phosphates synthesized in this study show more than one-step degradation and act in the condensed phase mechanism rather than in the vapor phase mechanism. Flame-retarding efficiency was evaluated by UL-94 test method. V-0 rating was achieved at 3-5 wt% of FR loading for PC, which is better than the FR performance of RDP. The high P-OH generation tendency is responsible for the better FR performances of these compounds. The degradation path is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号