首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Synthesis and performance of cyclic phosphorus-containing flame retardants   总被引:2,自引:0,他引:2  
A series of organo-cyclic phosphorus compounds were synthesized in an attempt to find an efficient flame retardant (FR) for acrylonitrile-butadiene-styrene (ABS). The success of synthesis was confirmed by 1H and 31P NMR. Thermogravimetric analysis (TGA) results reveal that cyclic phosphorus compounds synthesized in this study show almost one step degradation between 250 and 400 °C and are believed to work in the vapour phase rather than in the condensed phase. From UL-94 test, V-0 rating was achieved at 15-35 wt% loading of cyclic or cyclic alkyl phosphonate FR and no rating at 35 wt% loading of cyclic phosphate for ABS. On the other hand, a much lower loading (7.5%) was needed to obtain V-0 rating for polycarbonate when 3,9-diphenyl-3,9-dioxa-2,4,8,10-tetraoxa-3,9-diphosphaspiro-5,5-undecane (PBPP) was added as FR. All the results show that the flame retarding effect is strongly dependent on the P content of the FR incorporated. The flame retardant mechanism of cyclic phosphorus compounds is also discussed.  相似文献   

2.
Various nitrogen-phosphorus (P-N) compounds based on phosphoramidate were synthesized as model compounds to investigate the relationships among the chemical structure of linker connecting diphenylphoryl groups between the phosphoramidates, the N content, thermal stability, and flame-retarding ability. The flame-retarding efficiencies were evaluated by the limiting oxygen index (LOI) and UL-94 vertical test methods. It was found that bisphosphoramidates are more thermally stable and produce more charred residues when compared to the corresponding bisphosphate compounds. Aromatic phosphoramidates show fairly good flame retardancy for PC and UL-94 V-0 ratings are achieved with addition of as small amount as 3-5 wt%. However, no rating is found for ABS at 30 wt% loading of bisphosphoramidate FRs which leave the remarkably high residues at 600 °C. The thermogravimetric analysis (TGA) results indicate that these compounds work in condensed phase rather than in gas phase. The effect of chemical structure of linker on the flame retardancy is also discussed.  相似文献   

3.
A series of organo phosphorus flame retardants (FR) based on cyclic phosphates were synthesized in an attempt to find an efficient FR for polycarbonate (PC) and acrylonitrile-butadiene-styrene copolymer (ABS). The success of synthesis was confirmed by FT-IR and 1H and 31P NMR. Their thermal stability and flame-retarding efficiency as a single component additive were investigated and compared with those of aromatic based phosphate, resorcinol bis(diphenyl phosphate) (RDP). Thermogravimetric analysis (TGA) results reveal that cyclic phosphates synthesized in this study show more than one-step degradation and act in the condensed phase mechanism rather than in the vapor phase mechanism. Flame-retarding efficiency was evaluated by UL-94 test method. V-0 rating was achieved at 3-5 wt% of FR loading for PC, which is better than the FR performance of RDP. The high P-OH generation tendency is responsible for the better FR performances of these compounds. The degradation path is also discussed.  相似文献   

4.
An inorganic azo diphosphonate (INAZO), (KO)2(O)P-NN-P(O)(OK)2·4H2O, was synthesized and tested as a novel type of flame retardant additive for castor oil and oligomeric methylene diphenyl diisocyanate (PMDI) based two component polyurethane adhesive with or without using dolomite ((CaMg(CO3)2) as filler. Flammability according to UL 94 test and performance under forced-flaming conditions (cone calorimeter) were investigated at the additive loadings of 5, 10 and 20 wt %. It was shown that INAZO improves flame retardancy by significantly reducing heat release rate (HRR), maximum average rate of heat emission (MARHE) and total smoke release (TSR) values in comparison to CaMg(CO3)2 filled polyurethane adhesives. The macroscopic structure of the sample residues after cone calorimeter measurement was also analysed. The action mechanism of the developed INAZO flame retardant is suggested to be mainly in the condensed phase. UL 94 V-0 rating was achieved in the vertical burning test when 10 wt % loading of INAZO was used, whereas the reference flame retardant ammonium polyphosphate (APP) required a loading of 20 wt % to reach the V-0 classification.  相似文献   

5.
Various analogos of phosphonic acid, phosphinic acid, and CH3? P(O) group containing organo‐phosphorus compounds were synthesized as model compounds to investigate the effects of P content and the structure of flame retardant (FR) on their fire retarding performances of acrylonitrile–butadiene–styrene (ABS) and ethylene–vinyl acetate (EVA) copolymer. The success of synthesis was confirmed by 1H‐ and 31P‐NMR. The flame retarding efficiencies were evaluated by a UL‐94 vertical test method. Thermogravimetric analysis results reveal that all the mixtures of FRs with ABS or EVA exhibit no or very little charred residues at 600°C under inert atmosphere condition, indicating that all FRs work in the gas phase rather than in the condensed phase for both ABS and EVA. The fire retarding efficiency of FR depends not only on the P content in FR but also on the nature of its structure. UL‐94 results show that P FRs with ? CH3 group attached to the P atom exhibits the best fire retarding performance on both ABS and EVA. It was found that at least 4 wt% P in the formulation is required to show self‐extinguishing ability for both ABS and EVA when P FRs having ? CH3 group are employed. The fire retarding efficiency of P FRs with different attached group is in order of: ? CH3 > ? C6H5 > ? OH > ? H. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
STUDIES ON FLAME-RETARDANT PC/ABS MULTIPLE-ELEMENT ALLOY   总被引:2,自引:0,他引:2  
The preparation technology of flame-retardant PC/ABS alloys was studied in this paper. Using a high-efficiencyflame retardant system and by means of multiple-ingredient compatibilizing, PC/ABS alloys with excellent impact strengthand flame retardant property were prepared. The experimental results showed that by using PS-g-MAH and SMA assynergistic compatibilizers, the notched Izod impact strength and flammability of PC/ABS alloy obtained in the present work can be up to 175 J/m and UL-94 V0, respectively.  相似文献   

7.
The thermal decomposition of flame retardant free high-impact polystyrene (HIPS) and four HIPS samples containing brominated flame retardants has been studied using TGA at different heating rates between 2.5 and 10 K min−1. Decabromodiphenyl ether (DPE) and decabromodibenzyl (DDB) were used as flame retardants, and two of the samples contained antimony trioxide (Sb2O3) synergist besides the brominated additives. The activation energies (EA) and frequency factors (k0) were calculated by the methods of Kissinger and Ozawa. A compensation effect was observed and used for the identification of changes in the degradation kinetics. In a third step, the kinetic model of the reaction was determined. Both Kissinger and Ozawa showed that the HIPS degraded with an EA of 200 kJ mol−1. The choice of the flame retardant had, however, little impact on the TGA plot. The addition of a flame retardant as well as the addition of Sb2O3 reduced the EA. Fire retardant free HIPS degraded mainly by power-law kinetics, while the addition of a flame retardant caused the mechanism to change to a phase-boundary controlled mechanism after a weight loss of 80 wt%.  相似文献   

8.
A s-triazine containing hyperbranched polyamine (HBPA) has been synthesized from cyanuric chloride and aromatic diamine, 4,4′-(1,4-phenylenediisopropylidene) bis-aniline by nucleophilic displacement polymerization technique using an A2 + B3 approach with high yield (>80%). The synthesized polymer has been characterized by 1H NMR, 13C NMR, FT-IR spectroscopic studies, elemental analysis, solubility and measurement of solution viscosity. The thermogravimetric (TG) analysis and differential scanning calorimetric (DSC) studies indicate that the polymer is thermostable upto 290 °C without any decomposition and has glass transition temperature of 243 °C. The flame retardancy of the pure powder polymer and the blends with linear commercial polymers such as plasticized PVC and LDPE with this hyperbranched polymer were investigated by the measurement of limiting oxygen index (LOI) value. The results show that the polymer has self-extinguishing characteristic (LOI = 38) and acts as an effective flame retardant additive for the above linear base polymers. The synergistic effect of this hyperbranched flame retardant was observed with triphenyl phosphine oxide in the same base polymers. The flammability efficiency of the hyperbranched polyamine is also evaluated by help of thermogravimetric (TG) analysis. The heat aging and leaching in different chemical media did not influence the flame retardancy of the blends.  相似文献   

9.
一种无卤阻燃ABS体系的阻燃性能研究   总被引:3,自引:0,他引:3  
ABS是本世纪40年代发展起来的通用型热塑性材料[1],它有良好的力学性能,耐化学腐蚀、易加工等优点[2-6].  相似文献   

10.
A carbonization agent, 3,9‐di (2‐hydroxyisopropyl)‐2,4,8,10‐tetraoxa‐3,9‐diphosphaspiro‐[5,5]‐undecane (SPEPO), was synthesized from pentaerythritol (PER), phosphorus trichloride, formic acid, and acetone as raw materials. The structure of SPEPO was characterized by FTIR and 1H‐NMR. As a carbonization agent and an acid source, SPEPO can form a novel intumescent flame‐retardant (IFR) system for low density polyethylene (LDPE) together with ammonium polyphosphate (APP) and melamine phosphate (MP). The flame retardancy and thermal behavior of the IFR system for LDPE were investigated by limiting oxygen index (LOI), UL‐94 test, and thermogravimetric analysis (TGA). When the weight ratio of SPEPO, APP, and MP is 7:7:1 and their total loading level is 30%, the IFR‐LDPE presents the optimal flame retardancy (LOI value of 27.6 and UL‐94 V‐0 rating). However, SPEPO, APP, or MP can only show a very poor flame‐retardant performance when used alone. This indicates that there is a synergistic effect among SPEPO, APP, and MP. TGA results obtained in air demonstrate that SPEPO has an ability of char formation itself, and the char residue of SPEPO can reach 24 wt% at 700°C. The IFR can change the thermal degradation behavior of LDPE, enhance Tmax of the decomposition peak of LDPE, and promote LDPE to form char based on the calculated and the experimental data of residues. According to the results of Py‐GC/MS in combination with FTIR of the char residues at different temperatures, a possible flame‐retardant mechanism has been proposed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
In order to prepare halogen-free flame-retardant glass-fiber-reinforced poly(ethylene terephthalate) (FR-GF-PET), a novel flame retardant containing three flame-retardant elements, P, N and S, was synthesized by melt condensation reaction. Its chemical structure was characterized by FT-IR and 1H NMR spectra. FR-GF-PET was prepared by melt-mixing the flame retardant with GF-PET. The effects of the flame retardant on the flammability and thermally decomposing behaviors of GF-PET were studied via LOI, UL-94 and TGA tests. The results showed that despite a negative effect on the thermal stability of GF-PET, the incorporation of the flame retardant improved the flame retardancy of GF-PET largely. The LOI values of GF-PET increase linearly with the increase of flame retardant content. The GF-PET passed the V-0 rating in UL-94 tests when 15 wt% of the flame retardant was added to GF-PET. An interesting phenomenon was found, that is, with the increase of flame retardant content, the flame retardancy of the system increased but the char yield decreased, which was explained according to the evidences of XPS tests and the kinetics of thermally decomposing reaction.  相似文献   

12.
An intumescent flame retardant spirocyclic pentaerythritol bisphosphorate disphosphoryl melamine (SPDPM) has been synthesized and its structure was characterized by Fourier transformed infrared spectrometry (FTIR), 1H and 31P nuclear magnetic resonances (NMR). A series of polylactide (PLA)-based flame retardant composites containing SPDPM were prepared by melt blending method. The combustion properties of PLA/SPDPM composites were evaluated through UL-94, limiting oxygen index (LOI) tests and microscale combustion calorimetry (MCC) experiments. It is found that SPDPM integrating acid, char and gas sources significantly improved the flame retardancy and anti-dripping performance of PLA. When 25 wt% flame retardant was added, the composites achieved UL-94 V0, and the LOI value was increased to 38. Thermogravimetric analysis (TGA) showed that the weight loss rate of PLA was decreased by introduction of SPDPM. In addition, the thermal degradation process and possible flame retardant mechanism of PLA composites with SPDPM were analyzed by in situ FTIR.  相似文献   

13.
Halogen free nitrogen-phosphorous flame retardants (PMOP) were prepared through reaction of melamine and polyphosphoric acid in the presence of flame retardant modifier CM with silicotungistic acid as a catalyst in aqueous solution. FT-IR, XRD, DSC and TGA techniques were used to characterize the reaction product PMOP. The obtained flame retardants were then used to prepare flame retardant (FR) polyamide 6 (PA6) composite reinforced with glass fiber (GF) and the factors affecting the flame retardancy of the material were also investigated. The FR GF reinforced PA6 composite and the obtained charred layers were analyzed by utilizing TGA, SEM, FT-IR and XRD. The properties of the charred layer were connected with the flame retardancy of the corresponding material to reveal the flame retarding mechanism of FR GF reinforced PA6 composite. The experimental results show that PMOP flame retardant consists of melamine polyphosphate, melamine phosphate and possible melamine pyrophosphate. The presence of CM was found to improve the flame retardancy of FR GF reinforced PA6 composite. It was experimentally found that PMOP flame retardant, which is comparatively stable in the range of processing temperatures of PA6, is particularly suitable for flame retarding PA6 reinforced with GF. With increasing the flame retardant content, the flame retardancy of the FR reinforced material is not improved so obviously. However, the increase in the GF content greatly improves the flame retardancy of the composite, because GF greatly increases the char yield of material, decreases the maximal thermal decomposition rate, promotes the formation of charred layer with (PNO)x structure and greatly increases the strength of the charred layer. The prepared FR GF reinforced PA6 composites have good comprehensive properties with flame retardancy 1.6 mm UL 94 V-0 level, tensile strength 76.8 MPa, Young's modulus 11.7 GPa, Izod notched impact strength 4.5 kJ/m2, flexural strength 98.0 MPa and flexural modulus 7.2 GPa, showing a better application prospect.  相似文献   

14.
A new triazine polymer was synthesized by using cyanuric chloride, ethanolamine and ethylenediamine as raw materials. It is used both as a charring agent and as a foaming agent in intumescent flame retardants, designated as charring-foaming agent (CFA). Effect of CFA on flame retardancy, thermal degradation and mechanical properties of intumescent flame retardant polypropylene (PP) system (IFR-PP system) has been investigated. The results demonstrated that the intumescent flame retardant (IFR) consisting of CFA, APP and Zeolite 4A is very effective in flame retardancy of PP. It was found that when the weight ratio of CFA to APP is 1:2, that is, the components of the IFR are 64 wt% APP, 32 wt% CFA and 4 wt% Zeolite 4A, the IFR presents the most effective flame retardancy in PP systems. LOI value of IFR-PP reaches 37.0, when the IFR loading is 25 wt% in PP. It was also found that when the IFR loading is only 18 wt% in PP, the flame retardancy of IFR-PP can still pass V-0 rating, and its LOI value reaches 30.2. TGA data obtained in pure nitrogen demonstrated that CFA has a good ability of char formation itself, and CFA shows a high initial temperature of the thermal degradation. The char residue of CFA can reach 35.7 wt% at 700 °C. APP could effectively promote the char formation of the APP-CFA system. The char residue reaches 39.7 wt% at 700 °C, while it is 19.5% based on calculation. The IFR can change the thermal degradation behaviour of PP, enhance Tmax of the decomposition peak of PP, and promote PP to form char, based upon the results of the calculation and the experiment. This is attributed to the fact that endothermic reactions took place in IFR charring process and the char layer formed by IFR prevented heat from transferring into inside of IFR-PP system. TGA results further explained the effective flame retardancy of the IFR containing CFA.  相似文献   

15.
A novel flame retardant additive hexa-(phosphaphenanthrene -hydroxyl-methyl-phenoxyl)-cyclotriphosphazene (HAP-DOPO) with phosphazene and phosphaphenanthrene double functional groups has been synthesized from hexa-chloro-cyclotriphosphazene, 4-hydroxy-benzaldehyde and 9,10-dihydro-9-oxa-10- phosphaphenanthrene 10-oxide(DOPO). The structure of HAP-DOPO was characterized by Fourier transformed infrared (FT-IR) spectroscopy and 1H nuclear magnetic resonance (1H NMR) and 31P nuclear magnetic resonance (31P NMR). The additive HAP-DOPO was blended into diglycidyl ether of bisphenol-A (DGEBA) to prepare flame retardant epoxy resins. The flame retardant properties and thermal properties of the epoxy resins cured by 4, 4′-Diamino-diphenyl sulfone (DDS) were investigated from the differential scanning calorimeter (DSC), the thermogravimetric analysis (TGA), UL94 test, the limiting oxygen index (LOI) test and Cone calorimeter. Compared to traditional DOPO-DGEBA and ODOPB-DGEBA thermosets, the HAP-DOPO/DGEBA thermosets have higher Tgs at the same UL94 V-0 flammability rating for their higher crosslinking density and have higher char yield and lower pk-HRR at same 1.2 wt.% phosphorus content which confirm that HAP-DOPO has higher flame retardant efficiency on thermosets. The scanning electron microscopy (SEM) results shows that HAP-DOPO in DGEBA/DDS system obviously accelerate formation of the sealing, stronger and phosphorus-rich char layer to improve flame retardant properties of matrix during combustion.  相似文献   

16.
An integrative passive sampler (Chemcatcher®) consisting of a 47 mm C18 Empore™ disk as the receiving phase overlaid with a thin cellulose acetate diffusion membrane was developed and calibrated for the measurement of time-weighted average water concentrations of organotin compounds [monobutyltin (MBT), dibutyltin (DBT), tributlytin (TBT) and triphenyltin (TPhT)] in water. The effect of water temperature and turbulence on the uptake rate of these analytes was evaluated in the laboratory using a flow-through tank. Uptake was linear over a 14-day period being in the range: MBT (3-23 mL day−1), DBT (40-200 mL day−1), TBT (30-200 mL day−1) and TPhT (30-190 mL day−1) for all the different conditions tested. These sampling rates were high enough to permit the use of the Chemcatcher® to monitor levels of organotin compounds typically found in polluted aquatic environments. Using gas chromatography (GC) with either ICP-MS or flame photometric detection, limits of detection for the device (14-day deployment) for the different organotin compounds in water were in the range of 0.2-7.5 ng L−1, and once accumulated in the receiving phase the compounds were stable over prolonged periods. Due to anisotropic exchange kinetics, performance reference compounds could not be used with this passive sampling system to compensate for changes in sampling rate due to variations in water temperature, turbulence and biofouling of the surface of the diffusion membrane during field deployments. The performance of the Chemcatcher® was evaluated alongside spot water sampling in Alicante Habour, Spain which is known to contain elevated levels of organotin compounds. The samplers provided time-weighted average concentrations of the bioavailable fractions of the tin compounds where environmental concentrations fluctuated markedly in time.  相似文献   

17.
The flammability characteristics and synergistic effect of hydrotalcite with microencapsulated red phosphorus (MRP) in halogen-free flame retardant ethylene vinyl acetate (EVA) composite have been studied by cone calorimeter test (CCT), thermogravimetric analysis (TGA), limiting oxygen index (LOI) and UL-94 test. The results obtained by comparing the flame retardancy of hydrotalcite with magnesium hydroxide (MH) and aluminium hydroxide (AH) for their EVA composites showed that hydrotalcite has higher flame retardant effect than MH and AH at the same loading level. The CCT tests indicated that the heat release rate (HRR) and mass loss rate (MLR) of EVA composite blended with hydrotalcite greatly decreased compared with those blended with MH and AH. The LOI values of EVA/hydrotalcite composites are 3-4% higher than those of the corresponding MH composites at 40-60 wt% loading levels, and 6% higher than that of the corresponding AH composite at 40 wt% loading level. Moreover, the addition of a given amount of MRP apparently resulted in the increase of LOI value and decrease of the HRR and MLR as well the loading of hydrotalcite in EVA blend while keeping the V-0 rating in UL-94 test. However, the smoke release increased during the combustion of EVA/hydrotalcite blend containing MRP.  相似文献   

18.
A novel flame retardant containing phosphorous-nitrogen structure, the ammonium salt of 2-hydroxyl-5,5-dimethyl-2,2-oxo-1,3,2-dioxapho sphorinane (PNOH), was synthesized and its structure was characterized by 1H NMR and FTIR spectra. PNOH was used together with ammonium polyphosphate (APP) to prepare a novel intumescent flame retardant (IFR) for polyvinyl alcohol (PVA). When a few amounts (0.5%) of metal chelates were added, the flame retardancy of the IFR-PVA systems was significantly improved, having a high LOI value of 34.2 in a total IFR loading of 15 wt.%. In order to have an understanding of the resulting flame retardant effects, the thermal degradation behaviors of IFR-PVA systems were investigated by thermogravimetric analysis (TGA), and the morphology and structures of residues generated in different conditions were investigated by scanning electronic microscopy (SEM) and FTIR spectra. The results show that NiSAO can promote the thermal stability of the IFR-PVA; the residual char containing polyphosphoric or phosphoric acid is formed during the combustion; the formation of a continuous and dense char layer could inhibit the transmission of heat during contacting with flame and shows good flame retardancy.  相似文献   

19.
The focus of this study is an investigation of the effect of oxidation state of phosphorus in phosphorus-based flame retardants on the thermal and flame retardant properties of polyurea and epoxy resin. Three different oxidation states of phosphorus (phosphite, phosphate and phosphine oxide) additives, with different thermal stabilities at a constant phosphorus content (1.5 wt.%) have been utilized. Thermal and flame retardant properties were studied by TGA and cone calorimetry, respectively. The thermal stability of both polymers decreases upon the incorporation of phosphorus flame retardants irrespective of oxidation state and a greater amount of residue was observed in the case of phosphite. Phosphate was found to be better flame retardant in polyurea, whereas phosphite is suitable for epoxy resin. Phosphite will react with epoxy resin by trans-esterification, which is demonstrated by FTIR and 31P NMR. Further, TG–FTIR and XPS studies also provide information on flame retardancy of both polymers with phosphorus flame retardants.  相似文献   

20.
The unsaturated polyester resins (UPR) were usually applied in electronic equipment, but the intrinsic flammability severely retrained their application. A mono‐component flame retardant poly (piperazine methylphosphonic acid neopentylglycol ester) (PPMPNG) made in our lab was selected and applied to improve their flame retardant performance. The UPR thermosets achieved UL‐94 V‐0 grade during vertical burning tests and the limiting oxygen index was as high as 32.1% when 15 wt% PPMPNG was incorporated. PPMPNG promoted the decomposition and carbonization of UPR materials in advance during heating process, and the residual mass was effectively enhanced at high temperature. The flame retardant mechanism of UPR/PPMPNG thermosets was investigated by pyrolysis‐gas chromatography/mass spectrometry tests, and the measurement of the morphologies and chemical components of the char residue. The phosphine oxygen radical was generated and then quenched the active free radicals in gas phase. Moreover, the av‐EHC of FR‐UPR was declined from 15.8 MJ kg?1 of pure UPR to 8 9 MJ kg?1 corresponding a reduction of 43.6%, which also verified the flame retardant effect in gas phase. The compact, integrated, and graphitized char layer was produced on materials surface and then exerted excellent barrier effect in condensed phase. Thus, the UPR/PPMPNG composites were conferred superior flame retardant properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号