首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A chemiluminescence (CL) method is presented for the flow injection determination of norfloxacin (NFLX). It is based on the fact that the weak CL of the Ce(IV)-Na2SO3 redox system is strongly enhanced in the presence of silver nanoparticles. UV-visible and fluorescence spectroscopy was carried out and showed that the energy of the intermediate SO2*, originating from the reaction of Ce(IV) with Na2SO3, was transferred to Tb3+ via NFLX, and that the silver nanoparticles (AgNPs) accelerate the process due to the electric activity of AgNPs. Norfloxacin was detected by measuring the CL intensity which increases linearly with the concentration of NFLX in the range from 10 nM to 50 μM. The detection limit is lowered to 2.0 nM. The method was successfully applied to the determination of NFLX in eyedrops.  相似文献   

2.
《中国化学快报》2021,32(12):3931-3935
Chemiluminescence (CL) has been widely used for bioanalysis owing to its high sensitivity, low background and simplicity. However, most of the CL systems need acidic/alkaline conditions or organic solvent to enhance their luminescent efficiency, and the non-physiological conditions can usually lead to the misfunction of biomolecules during biosensing. Herein, we report a highly luminous CL system under physiological conditions based on carbon dots-bis(2-carbopentyloxy-3,5,6-trichlorophenyl) oxalate (CDs-CPPO) micelles, and further used it in biosensing application. In the CL system, the amphiphilic surfactant packed CPPO and hydrophobic CDs together to form CDs-CPPO micelles. Such micelles solution not only isolated the CPPO from water to prevent its hydrolysis but also made the close proximity between CPPO and CDs, thus significantly enhancing the CDs quantum yield. The CL quantum yield was calculated to be 5.26 × 10−4 einsteins/mol, about 200-fold higher than that of the most commonly used luminol CL system. The oxidases (e.g., glucose oxidase) were tested to be susceptible to the organic solvent and non-physiological pH. Hence, the CL system was used for the detection of oxidase substrates (exemplified by glucose) in serum samples, and the limit of detection was as low as 8.4 nmol/L. The highly luminous CL system that can work under physiological conditions is promising for biosensing applications  相似文献   

3.
Chemiluminescence (CL) of triphenylmethyl organometallics (TPM), Ph3CNa, Ph3CMgCl, and Ph3CLnCl2 (Ln=Cd, Eu, and Dy), in THF and toluene during oxidation by O2 and the (NH4)2Ce(NO3)6 complex was found. The first CL is caused by the luminescence of two emitters: (Ph3C)*, emitting in the green spectral region (λmax=524, 550 nm), and an unstable product of substitution of the hydrogen atom in the phenyl ring of the Ph3C radical, emitting in the red region (λmax=580±20 nm). The emitter of the second CL, Ph3C.*, is generated in the elementary electron transfer from the Ph3C anion to CeIV, reducing the latter to CeIII. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1102–1105, June, 1999.  相似文献   

4.
Shen H  Fang Q 《Talanta》2008,77(1):269-272
An improved microfluidic chip-based sequential-injection trapped-droplet array liquid-liquid extraction system with chemiluminescence (CL) detection was developed in this work. Two recess arrays were fabricated on both sides of the extraction channel to produce droplet arrays of organic extractant. A chip integrated monolithic probe was fabricated at the inlet of the extraction channel on the glass chip instead of the capillary probe connected to the microchannel, in order to improve the system stability and reliability. A slotted-vial array system coupled with the monolithic probe was used to sequentially introduce sample and different solvents and reagents into the extraction channel for extraction and CL detection. The performance of the system was demonstrated in the determination of Al3+ using Al3+-dihydroxyazobenzene (DHAB) and tributyl phosphate (TBP) extraction system. The operation conditions, including extraction time, concentration and flow rate of the CL reagents, were optimized. Within one analysis cycle of 12 min, an enrichment factor of 85 was obtained in the extraction stage with a sample consumption of 1.8 μL. The consumption of CL reagent, bis(2-carbopentyloxy-3,5,6-trichlorophenyl)oxalate (CPPO), was 120 nL/cycle. The detection limit of the system for Al3+ was 1.6 × 10−6 mol/L with a precision of 4.5% (R.S.D., n = 6).  相似文献   

5.
A novel rapid flow injection method with chemiluminescence (CL) detection was established for the determination of ciprofloxacin (CPLX), which is an antibiotic commonly used. The method is based on CL of Ce(IV)–SO32− sensitized by Tb3+–CPLX, and showed the intensive bands characteristic of Tb3+ (5D47F5). The optimum conditions for CL emission were investigated. The linear relationship between the relative CL intensity and the concentration of CPLX is in the range of 9.0×10−9–1.0×10−6 mol/l with a detection limit of 3.1×10−10 mol/l. The relative standard deviation is 2.8% (n=11) for a level of 5.0×10−8 mol/l. The method was applied to the analysis of CPLX in human serum and urine samples with satisfactory results. The possible mechanism for this sensitized CL reaction is also discussed.  相似文献   

6.
A series of low‐melting‐point salts with hexakisdicyanonitrosomethanidolanthanoidate anions has been synthesised and characterised: (C2mim)3[Ln(dcnm)6] ( 1 Ln ; 1 Ln = 1 La , 1 Ce , 1 Pr , 1 Nd ), (C2C1mim)3[Pr(dcnm)6] ( 2 Pr ), (C4C1pyr)3[Ce(dcnm)6] ( 3 Ce ), (N1114)3[Ln(dcnm)6] ( 4 Ln ; 4 Ln = 4 La , 4 Ce , 4 Pr , 4 Nd , 4 Sm , 4 Gd ), and (N1112OH)3[Ce(dcnm)6] ( 5 Ce ) (C2mim=1‐ethyl‐3‐methylimidazolium, C2C1mim=1‐ethyl‐2,3‐dimethylimidazolium, C4C1py=N‐butyl‐4‐methylpyridinium, N1114=butyltrimethylammonium, N1112OH=2‐(hydroxyethyl)trimethylammonium=choline). X‐ray crystallography was used to determine the structures of complexes 1 La , 2 Pr , and 5 Ce , all of which contain [Ln(dcnm)6]3? ions. Complexes 1 Ln and 2 Pr were all ionic liquids (ILs), with complex 3 Ce melting at 38.1 °C, the lowest melting point of any known complex containing the [Ln(dcnm)6]3? trianion. The ammonium‐based cations proved to be less suitable for forming ILs, with complexes 4 Sm and 4 Gd being the only salts with the N1114 cation to have melting points below 100 °C. The choline‐containing complex 5 Ce did not melt up to 160 °C, with the increase in melting point possibly being due to extensive hydrogen bonding, which could be inferred from the crystal structure of the complex.  相似文献   

7.
《Analytical letters》2012,45(12):2475-2481
Abstract

A new chemiluminescence (CL) reaction was observed when cloperastine hydrochloride was injected into the reaction mixture after the CL reaction of Ce(IV) and sodium sulfite finished. A new flow injection CL method for the determination of cloperastine hydrochloride was established based on the CL reaction. The relative standard deviation (RSD) for the determination of cloperastine hydrochloride was 1.3% (n=11, c=1.0×10?6 g/mL). The CL intensity responded linearly to the concentration of cloperastine hydrochloride in the range 2.0×10?7~2.0×10?5 g/mL (r=0.9962). The detection limit was 5×10?8 g/mL cloperastine hydrochloride. The method had been applied to the determination of cloperastine hydrochloride in tablets with satisfactory results.  相似文献   

8.
This study investigated the synthesis of the biocatalyst, magnesium 2,6‐di‐tert‐butyl‐4‐methylphenoxide (Mg(BHT)2) complex, and the ring‐opening polymerization (ROP) of ε‐caprolactone (CL). The complex demonstrates high catalytic activity and controllable of molecular weight for the ROP of CL in tetrahydrofuran at room temperature, even when polymerization was performed under air. Before this study, the polymerization of CL had never been performed using a magnesium catalyst under air at room temperature. Various forms of alcohols with different purposes were also used as initiators with Mg(BHT)2. The results show that the magnesium complex acts as a perfect catalyst because of its high catalytic activity and control ability without any cytotoxicity in the polymerization of CL, making it suitable for biomedical applications. In addition, nanoparticle formation, cytotoxicity, and phototoxicity of tri‐2‐hydroxyethyl ester [Ce6‐(CH2CH2OPCL)3] were also studied in this article and Ce6‐(CH2CH2OPCL)3 formed nanoparticle can act as a nanophotosensitizer for photodynamic therapy. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

9.
A flow-injection chemiluminescence (CL) method, based on the luminescent properties of the Ce(IV)-Na2SO3-lanthanide(III)-grepafloxacin system, was developed for the determination of grepafloxacin {1-cyclopropyl-6-fluoro-1,4-dihydro-5-methyl-7-(3-methyl-1-piperazinyl)-4-oxo-3-quinolinecarboxylic acid}. La(III), Tb(III), and Eu(III) ions were tested as possible chemiluminescence sensitizers. The best results were achieved when Tb(III) was used as lanthanide ion, so the technique was optimised working with this ion. Under the optimum experimental conditions, the linear range was 0.05-2.00 μg ml−1 grepafloxacin, with a 0.01 μg ml−1 detection limit and 2.0% relative standard deviation (n=10). The proposed procedure has been applied to the determination of grepafloxacin in tablets and spiked human urine.  相似文献   

10.
Xi J  Ai X  He Z 《Talanta》2003,59(5):1045-1051
A chemiluminescence (CL) method for the determination of barbituric acid (BA) was proposed, which is based on the enhancement of BA to the CL intensity of Tris-(1,10-phenanthroline)ruthenium(II) (Ru(phen)32+)-cerium(IV) (Ce(IV)) system. The concentration of BA is proportional to the CL intensity in the range of 5.0×10−3-2.0 μg ml−1. The detection limit is 6.9×10−4 μg ml−1. The relative standard deviation (R.S.D.) of determining 11 samples containing 0.20 μg ml−1 BA is 3.2%. This CL method has been successfully applied to the determination of BA in the synthetic samples. The mechanism of CL reaction was studied.  相似文献   

11.
《Analytical letters》2012,45(14):2037-2052
A rapid and simple flow injection (FI) method is reported for the determination of vitamin A (retinol) based on its strong enhancing effect on the Ce(IV)–Na2SO3 chemiluminescence (CL) reaction in an acidic solution. The effect of key chemical and physical parameters (i.e., reagent concentrations, flow rate, and sample volume) was optimized and potential interferences examined. Under the selected experimental conditions, a linear calibration was obtained between the CL intensity and vitamin A concentration in the range 0.1–8.0 µg mL?1 (r 2  = 0.9986, n = 8). The limit of detection (3 s x blank) was 0.01 µg mL?1 retinol (n = 6) and the relative standard deviation (RSD) for 0.25 µg mL?1 retinol was 2.3% (n = 10) with a sampling rate of 180 h?1. The method was successfully applied to infant milk-based formulas and pharmaceutical formulations and the results were not significantly different at 95% confidence interval with those obtained by using a spectrophotometric reference method. The possible CL mechanism is also discussed briefly supporting with UV-visible, fluorescence, and CL spectra.  相似文献   

12.
The redox potential of the Ce(IV)/Ce(III) DOTA is determined to be 0.65 V versus SCE, pointing out a stabilization of ~13 orders of magnitude for the Ce(IV)DOTA complex, as compared to Ce(IV)aq. The Ce(III)DOTA after electrochemical oxidation yields a Ce(IV)DOTA complex with a t1/2 ~3 h and which is suggested to retain the “in cage” geometry. Chemical oxidation of Ce(III)DOTA by diperoxosulfate renders a similar Ce(IV)DOTA complex with the same t1/2. From the electrochemical measurements, one calculates logK (Ce(IV)DOTA2?) ~ 35.9. Surprisingly, when Ce(IV)DOTA is obtained by mixing Ce(IV)aq with DOTA, a different species is obtained with a 2 : 1(M : L) stoichiometry. This new complex, Ce(IV)DOTACe(IV), shows redox and spectroscopic features which are different from the electrochemically prepared Ce(IV)DOTA. When one uses thiosulfate as a reducing agent of Ce(IV)DOTACe(IV), one gets a prolonged lifetime of the latter. The reductant seems to serve primarily as a coordinating ligand with a geometry which does not facilitate inner sphere electron transfer. The reduction process rate in this case could be dictated by an outer sphere electron transfer or DOTA exchange by S2O32?. Both Ce(IV)DOTA and Ce(IV)DOTACe(IV) have similar kinetic stability and presumably decompose via decarboxylation of the polyaminocarboxylate ligand.  相似文献   

13.
范顺利  屈芳  林金明 《化学学报》2006,64(18):1876-1880
在碱性介质中, CO32-对H2O2氧化鲁米诺化学发光反应具有重要作用, 荧光素钠对该反应具有很强的增敏作用. 据此, 建立了化学发光法测定二氧化碳的新方法. 方法的线性范围为1.0×10-10~5.0×10-6 mol•L-1 CO32-, 检出限为 1.2×10-11 mol•L-1 CO32- (相当于5.3×10-10 g•L-1 CO2). 该方法用于室内外空气中二氧化碳含量的测定, 相对标准偏差1.8%~2.1% (n=11), 加标实验回收率97.6%~101.4%. 论文还探讨了反应的发光机理, 发光反应很可能是由溶液中的CO32-与H2O2作用而产生的活性自由基引发, 荧光素钠对发光的增敏作用为化学能量转移过程.  相似文献   

14.
Protonolysis of lanthanide tris(tetramethylaluminate)s with two equivalents of 2,6-diisopropylaniline affords LaIII and CeIII diimide compounds Ln[(μ-NC6H3iPr2-2,6)2AlMe2](thf)4 featuring a bidentate AlMe2-linked diimido ligand. As revealed for the corresponding Ce(GaMe4)3-reaction, formation of the diimide complexes proceeds via tetrametallic complexes of the type [Ce{(μ-NC6H3iPr2-2,6)(HNC6H3iPr2-2,6)(MMe3)}]2 (Me=Al, Ga). Oxidation of the cerium(III) complex with hexachloroethane leads to a neutral CeIV diimide species. Partial protonolysis with phenylacetylene and hydrogenolysis via H3SiPh give conclusive insights into the reactive coordination sites of such diimide complexes.  相似文献   

15.
Organometallic multi‐decker sandwich complexes containing f‐elements remain rare, despite their attractive magnetic and electronic properties. The reduction of the CeIII siloxide complex, [KCeL4] ( 1 ; L=OSi(OtBu)3), with excess potassium in a THF/toluene mixture afforded a quadruple‐decker arene‐bridged complex, [K(2.2.2‐crypt)]2[{(KL3Ce)(μ‐η66‐C7H8)}2Ce] ( 3 ). The structure of 3 features a [Ce(C7H8)2] sandwich capped by [KL3Ce] moieties with a linear arrangement of the Ce ions. Structural parameters, UV/Vis/NIR data, and DFT studies indicate the presence of CeII ions involved in δ bonding between the Ce cations and toluene dianions. Complex 3 is a rare lanthanide multi‐decker complex and the first containing non‐classical divalent lanthanide ions. Moreover, oxidation of 1 by AgOTf (OTf=O3SCF3) yielded the CeIV complex, [CeL4] ( 2 ), showing that siloxide ligands can stabilize Ce in three oxidation states.  相似文献   

16.
Abstract

We examined the ability of Bothrops jararaca venom (12.5?mg/kg) injected intraperitoneally (i.p.) to cause acute kidney injury (AKI) in rats. Blood urea and creatinine (AKI biomarkers, in g dL?1) were elevated after 2?h in venom-treated rats (urea: from 0.41?±?0.1 to 0.7?±?0.03; creatinine from 46.7?±?3.1 to 85?±?6.7; p?<?0.05; n?=?3 each), with no change in circulating reduced glutathione. Venom-treated rats survived for ~6?h, at which point platelets were reduced (×103 µL?1; from 763.8?±?30.2 to 52.5?±?18.2) whereas leukocytes and erythrocytes were slightly increased (from 4.7?±?0.3 to 6.6?±?0.1?×?103?µL?1 and from 8.38?±?0.1 to 9.2?±?0.09?×?106?µL?1, respectively; p?<?0.05); blood protein (5.2?±?0.4?g dL?1) and albumin (2.7?±?0.1?g dL?1) were normal, whereas blood and urinary urea and creatinine were increased. All parameters returned to normal with antivenom given 2?h post-envenomation. The i.p. injection of venom caused AKI similar to that seen with other routes of administration.  相似文献   

17.
In the present study, we assessed improvement of anti-inflammatory activity and drug delivery of sulfasalazine (SSZ) by the poly(lactic-co-glycolic acid), (PLGA), in H2O and dichloromethane (DCM) environments via density functional theory (DFT), ADMET, and molecular docking. Our calculated results based on binding energy and thermodynamic parameter represents that the interaction between SSZ and PLGA in Complex A via double hydrogen bonds is stronger in comparison with Complex B. The analysis of Ultraviolet–visible (UV–VIS) spectra proved the interaction of SSZ with PLGA by time-dependent density functional theory (TDDFT). Infrared (IR) spectra demonstrated that the structure of PLGA was shifted in the presence of the SSZ. The interaction of SSZ with PLGA leads to an increase in dipole moment and higher solubility with more negative Gibbs free solvation energy (ΔGsolv) values and lowering of the energy gap (Eg). The obtained results by Molecular docking demonstrates that the interaction of SSZ via its carboxylate group with PLGA (complex A) had a strong interaction towards the binding pocket of the target and as a potential inhibitor of the COX-2, TNF-α, and IL-1 receptors at the binding site as compared with the complex B.  相似文献   

18.
The photoluminescence (PL), electrochemical, and electroluminescence (EL) properties of EuIII complexes, [Eu(cppo)2(tta)3] ( 1 ) and [Eu(cpo)2(tta)3] ( 2 ; TTA=2‐thenoyltrifluoroacetonate) with two carbazole‐based phosphine oxide ligands, 9‐[4‐(diphenylphosphinoyl)phenyl]‐9H‐carbazole (CPPO) and 9‐(diphenylphosphoryl)‐9H‐carbazole (CPO), which have different bipolar structures, donor–π‐spacer–acceptor (D–π–A) or donor–acceptor (D–A) systems respectively, are investigated. The CPPO with D–π–A architecture has improved PL properties, such as higher PL efficiency and more efficient intramolecular energy transfer, than CPO with the D–A architecture. Gaussian simulation proved the bipolar structures and the double‐carrier injection ability of the ligands. The carrier injection abilities of triphenylphosphine oxide, CPO, and CPPO are gradually improved. Notably, the Gaussian and electrochemical investigations indicate that before and after coordination, the carrier injection ability of the ligands show remarkable changes because of the particularity of the D‐π–A and D–A systems. The electrochemical studies demonstrate that coordination induces the electron cloud to migrate from electron‐rich carbazole to electron‐poor diphenylphosphine oxide, and consequently increases the electron‐cloud density on diphenylphosphine oxide, which weakens its ability for electron affinity and induces the elevation of LUMO energy levels of the complexes. Significantly, the π‐spacer in the D–π–A system exhibits a distinct buffer effect on the variation of the electron‐cloud density distribution of the ligand, which is absent in the D–A system. It is demonstrated that the adaptability of the D–π–A systems, especially for coordination, is stronger than that of D–A systems, which facilitates the modification of the complexes by designing multifunctional ligands purposefully. 1 seems favorable as the most efficient electroluminescent EuIII complex with greater brightness, higher efficiencies, and more stable EL spectra than 2 . These investigations demonstrate that the phosphine oxide ligands with D–π–A architecture are more appropriate than those with D–A architecture to achieve multifunctional electroluminescent EuIII complexes.  相似文献   

19.
The present study details the highly effective and controlled ring-opening polymerization (ROP) of α-chloro-ε-caprolactone ( 1 , αClεCL), a cyclic ester that has been little explored thus far in ROP catalysis, using Zn- and Al-based catalysts [Zn(C6F5)2(toluene)] ( 4 ), [N,N′-bis(3,5-di-tert-butylsalicylidene)1,3-diaminopropanato]aluminium(III)benzyloxide ( 5 ) and [N,N′-bis(3,5-di-tert-butylsalicylidene)1,3-diamino-2,2′-dimethylpropanato]aluminium(III)benzyloxide] ( 6 ). Chain-length-controlled PαClεCL material is produced under solution ROP conditions, as deduced from GPC, NMR, MALDI-TOF, and kinetic data. In contrast, the ROP of 1 is ill-defined under bulk ROP conditions due to partial thermal degradation of the polymer chain (presumably through C–Cl cleavage), reflecting the limited stability of PαClεCL. The Al Catalysts 5 and 6 are highly active ROP catalysts of αClεCL at room temperature (TOF up to 2,400 hr−1) to afford well-defined P(αClεCL). In the case of Catalyst 6 , carrying out the ROP of αClεCL under immortal conditions (with BnOH as chain transfer agent) is clearly beneficial to ROP activity and control, with no apparent side-reaction of chloro-functionalized PCL chains as the ROP proceeds. The controlled character of these ROPs was further exploited for the production of chain-length-controlled PLLA-b-PαClεCL diblocks through sequential ROP of l -lactide and αClεCL, affording copolymers with improved thermal and biodegradable properties.  相似文献   

20.
Bacterial-derived formylated peptide, (FMLP) stimulates the respiratory burst activity of human neutrophils via phospholipase C (PLC) activation followed by increased production of second messengers, IP3 and DG(1). One synthetic bisphosphonate, clodronate was tested to see how it might affect Ca2+-mediated activation of the neutrophil respiratory burst. Clodronate itself did not significantly change the respiratory burst, measured by Luminol-dependent chemiluminescence (CL). However, clodronate inhibited the FMLP-mediated stimulation of CL significantly (p<0.001). A selective inhibitor of PLC, quinacrine, alone inhibited CL significantly (p<0.0001) but with clodronate the inhibition was potentiated. The sensitivity to EGTA-treatment with clodronate indicated that clodronate is a Ca2+ mobilizing agent. Furthermore, clodronate-mediated CL was sensitive (p<0.001) to inhibitors of protein kinase C or tyrosine kinase and potentiated with vanadate treatment. Data suggests possible involvement of bisphosphonate in regulating phospholipase C activity in human neutrophils, probably via Ca2+-mediated phosphorylation of the subunit of PLC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号