首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
材料基因组旨在将计算工具、数据库和实验工具有机结合,缩短研发时间,提高材料研发效率.高分子材料因其结构独特性和复杂性阻碍了材料基因组在高分子材料领域的发展.目前,国内外学者在高通量筛选高分子化学结构策略和构建性能预测方法等方面开展了尝试,并取得了一些成果.本文总结和评述了当前利用代理量方法和机器学习预测模型实现高分子材料基因组的进展,利用可计算的量代理宏观性能的代理量法和利用机器学习模型预测材料性能的方法在一定程度上克服了高分子复杂性的影响.在此基础上,系统地介绍了数据挖掘或模型构建的方法以及运用这些模型筛选不同类型高分子的思路,着重探讨了方法构建和材料筛选背后的思想以及对各类问题的解决措施.最后,探讨了当前高分子材料基因组发展中所面临的主要挑战,并展望了高分子材料基因组的未来发展方向.  相似文献   

2.
玻璃化转变是高分子物理教学中的重要内容.一些高分子物理教科书将聚合物玻璃化转变简单描述为玻璃到高弹态的力学转变,可能局限了学生对玻璃化转变重要科学问题认识的深度、广度和想象空间,甚至造成一些学生认为只有聚合物才存在玻璃化转变.笔者注意到了这一问题,考虑将聚合物玻璃化转变放在非晶物理框架下进行讲授;强调玻璃化转变是非晶物...  相似文献   

3.
玻璃化转变是聚合物的一种普遍现象,也是高分子物理教学过程中的一个重点内容.对玻璃化转变的本质进行深入透彻地讲解,有利于学生加深对高分子结构、高分子材料的性能和高分子链运动的统计学三个紧密相连部分的融会理解.针对目前教学过程中主要基于差示扫描量热法进行非晶态聚合物玻璃化转变温度概念讲解的不足,本论文交流了在教学过程中采用...  相似文献   

4.
随着纳米技术的发展,受限聚合物的玻璃化转变以及分子松弛行为受到了高分子物理学家的关注.由于纳米尺度效应,高分子薄膜的玻璃化转变以及分子松弛行为偏离于本体,呈现出尺寸依赖性.研究聚合物薄膜的玻璃化转变及其相关分子松弛行为对聚合物纳米材料的结构设计,进一步理解聚合物玻璃化转变的物理本质具有重要意义.本文总结了近20年来聚合物薄膜玻璃化转变行为的研究成果,介绍了薄膜分子松弛行为偏离本体的主要物理机制、聚合物薄膜分子运动能力的深度分布特征以及薄膜分子松弛行为的相关理论模型,并对该领域研究进行了展望.  相似文献   

5.
金属有机框架(简称MOF)玻璃为传统玻璃世界和非晶物理研究带来崭新成员,被视为下一代多孔化学及新型MOF衍生功能材料关键发展方向.作为金属离子或簇核与有机配体通过配位键连接形成的多孔网络,绝大多数MOF还未达到高温熔融态就不可避免地发生热分解,很难通过传统的熔融-淬冷法制备玻璃.面对相关挑战,本综述系统梳理MOF玻璃发展历程及最新进展,提出基于动态化学串联扰动的全新策略用于普适化制备MOF玻璃.基于新的玻璃化方法,发现更多MOF玻璃、阐明结构转变本质并拓展新颖性质功能是从动态化学到材料和非晶物理的重大学科交叉前沿.相关研究孕育系列新机遇,包括从框架/动态化学的设计和调控到MOF玻璃可控制备,从晶态MOF本征性质到其玻璃态的各种潜在性能及新功能应用,以及从MOF多物相多层次结构转换出发更好理解玻璃本质.  相似文献   

6.
从《高分子物理》考试试题实例出发,抓住聚合物材料的"结构决定性能,并最终决定用途"这条主线,详述了链结构因素(主链和取代基)和分子间作用力对聚合物玻璃化转变温度(Tg)的影响,并结合不同高分子材料的用途进行分析,使学生真切了解到材料结构与性能及用途之间的关系。这种理论联系实际的案例教学法有利于加深学生对高分子材料的感性认识,引发学生学习的广泛兴趣,促使教师进行自我教育和提高业务水平,从而取得良好的教学效果。  相似文献   

7.
巨型分子是一类新型高分子,其构建基元为结构更具刚性的分子纳米粒子,如多面体齐聚倍半硅氧烷(POSS)等.将多个分子纳米粒子三维连接而形成的一类巨型分子能够保持三维形状,这不同于传统的一维链状高分子.我们采用流变学手段研究了一系列处于本体条件、且具有不同直径的巨型分子,发现在玻璃化转变温度之上,其动力学由其直径决定.这与传统高分子中缠结主导的动力学截然不同:当巨型分子的直径跨过临界直径时,其松弛时间增加至少108倍;在临界直径以上的巨型分子不能扩散和松弛,表现出储能模量的平台,而且模量随温度线性增加,对应于分子纳米粒子的受限运动.跳出传统高分子的框架,巨型分子展现出不同于"蛇形运动"、"缠结"和"管子模型"的新规律,成为连接高分子体系和胶体体系的桥梁.随机一级相变理论推测,玻璃化转变时协同运动区域的直径大约为微观运动单元直径的6倍,这个分界与实验中巨型分子的临界直径一致,因此我们将这种类似于玻璃化的状态称为协同玻璃态.以这些巨型分子为代表的软团簇或可类比为玻璃化中的协同运动区域,将为研究玻璃化转变提供新的实验支持.  相似文献   

8.
玻璃与玻璃态的应用极其广泛。玻璃化转变是一种典型的非晶液-固转变,当转变发生时体系的结构并没有明显变化,因而我们无法将其归类于已有的任何相变类型。作为凝聚态物理和软物质领域的核心问题,玻璃化转变的研究已有近70年的历史。然而,时至今日,人们还是无法回答玻璃态的本质是什么这一基本问题。本文简述了玻璃态的性质以及伴随玻璃化转变发生的一些基本物理现象,并总结了半个世纪以来一些与玻璃化转变相关的理论,以期加深读者对玻璃及玻璃化转变的认识。  相似文献   

9.
高分子凝聚态的基本物理问题研究——项目简介之六高分子材料是国民经济、国防尖端迫切需要的重要材料.世界年产量已达亿吨.在美国有近半数的化学家从事与高分子有关的研究工作.为进一步促进我国高分子材料工业的发展,有必要加强相应的基础研究. 高分子凝聚态具有多层次结构、多重分子运动和非平衡等特点.通过化学与物理学科的交  相似文献   

10.
调制差示扫描量热法在高分子材料中的应用   总被引:1,自引:0,他引:1  
调制差示扫描量热法(MDSC)是在传统线性变温基础上叠加一个正弦震荡温度程序,将总热流量分解为可逆热流(热容成分)和不可逆热流(动力学成分),同时具有较高的灵敏度和分辨率,在研究高分子材料复杂相变时具有独特的优势。近年来,MDSC在研究高分子材料的玻璃化转变、结晶-熔融、热容变化等领域得到了较为广泛的应用。本文对MDSC近年来在高分子材料中的最新研究应用做了详细介绍。  相似文献   

11.
非晶结构对结晶高分子材料结构和最终使用性能有非常重要的影响,但目前对半晶高分子中非晶结构的认识还不太清晰并且有待进一步完善.随着研究手段的发展,结晶高分子中非晶区结构及其动力学行为的研究受到越来越多的关注.本文简要概述了目前对结晶高分子中非晶相的研究进展,主要从结晶高分子中非晶区的结构﹑结晶高分子中非晶区的松弛行为﹑非晶相对结晶高分子性能的影响以及等温结晶过程中非晶相的结构演化这四个方面进行介绍,并对它们的研究现状进行了概述,同时指出了目前在这方面研究中存在的争议和问题.  相似文献   

12.
超支化高分子上具有大量的活性末端基,对这些末端基的修饰和功能化会使其聚集态结构发生变化.文中针对超支化高分子所具有的独特结构和性能特点,概述了超支化高分子的构象结构和聚集态结构的研究现状,系统讨论了超支化高分子的支化度、分子量分布、空间尺度、玻璃化转变温度和特性粘度等分子结构参数,并在此基础上介绍了超支化高分子的物理化学性质和分析表征方法,同时综述了国内外学者在该领域的贡献,展望了该领域的研究进程和发展前景.  相似文献   

13.
高分子物理是高等院校高分子材料与工程专业的一门重要的专业基础课。"结晶"是高分子聚集态结构中重要的概念。巨大的分子量及长链状分子结构使高分子的结晶过程与小分子相比愈加复杂。在高分子物理课程的教学过程中,通过一定的逻辑架构向学生介绍结晶与有序、链柔性、玻璃化温度之间的关系并串联与结晶相关的一些概念(如结晶度、结晶温度、熔点以及结晶速率),使学生在初学阶段对高分子晶态结构建立起科学的认知体系。实践证明,通过这种教学方式,绝大多数同学都能较好地理解并掌握这部分教学内容。  相似文献   

14.
高分子材料在微纳米尺度常常表现出不同于本体的物理性质.对结晶性高分子来说,在纳米受限空间的成核机理、结晶结构和动力学特征都与本体材料有所不同.本文总结了近年来基于多孔氧化铝纳米模板(AAO)开展的高分子受限结晶的研究进展,重点介绍了本课题组的工作.研究发现,在AAO模板中,高分子结晶的过冷度大大增加,成核机理从本体的异相成核转变为均相成核或表面成核;高分子结晶结构通常表现为各向异性,动力学因素、热力学因素和界面性质均对取向结构有重要影响;受限情况下高分子结晶速率大大降低,表现出"成核控制"的动力学特征;空间受限使高分子结晶度降低,倾向于形成亚稳态晶型.最后,对该领域尚待解决的问题进行了展望.  相似文献   

15.
简要回顾了热导式微热量计的建立和发展,着重介绍了RD496微热量计的研制历程.归纳并介绍了RD496微热量计在化学和材料研究中的应用,包括物质晶型转化温度和转化热、溶解热和混合热、生成反应焓的测定,化学反应热动力学、稀释结晶动力学的研究,比热容和固体材料导热系数的测定,材料原位生长的量热研究和材料的微量吸附量热研究等;另外,对于其在高分子化学及物理、生物化学及农业科学等方面的应用进行了叙述.  相似文献   

16.
高分子材料由于其优异的物理和化学性能应用范围非常广泛,而同步辐射光源的发展大大提高了X射线吸收精细结构(XAFS)技术的使用.本文介绍了XAFS包括扩展X射线吸收精细结构(EXAFS)和X射线吸收近边结构(XANES)的实验原理和实验手段,综述了同行利用XAFS技术在常见高分子、有机金属高分子、钯掺杂高分子、离聚物及碳基材料等高分子领域的结构研究进展,展示了XAFS技术在高分子及其相关材料领域的重要作用和分析方法,体现了XAFS技术的优势和特点,并对XAFS技术在高分子及相关材料方面的应用进行了展望.随着同步辐射技术的发展和提高,XAFS技术在高分子领域的应用将会进一步拓展和提升.  相似文献   

17.
《高分子学报》2021,52(8):884-897
超分子和高分子的自组装是发展新型高性能材料的有力手段.通过自组装构筑多级有序结构,从而显著提高材料的力学、光学或电学性能,是化学和材料科学研究的前沿.然而精确调控自组装需要深入理解范德华、氢键、静电、主客体复合和π-π等相互作用以及动力学机理所扮演的角色.计算机模拟,尤其是分子动力学模拟,为研究自组装结构和演化过程提供了独一无二的手段.本文主要阐述超分子和高分子的多尺度模型和动力学模拟方法,讨论不同模拟方法的特点、适用范围和优势;进一步简述我们发展的定制模型和方法,以及同时提高模型精度和计算效率方面采取的策略.通过总结应用这些方法对超分子和高分子自组装开展的研究工作所取得的进展,为进一步发展自组装动力学模拟方法提供参考.  相似文献   

18.
阳禹辉  沈华琦  左彪 《化学通报》2024,87(3):258-270
高分子低温加工是材料领域重大挑战。相较于本体分子,位于材料表面高分子链的玻璃化转变温度降低、黏度减小、塑性增强,为高分子材料低温加工提供了可能途径。本文总结了近年来对非晶固体高分子表面分子运动的研究成果,从表面分子动力学的角度阐述了高分子表面低温流动性的起源及其影响因素,举例介绍了表面低温流动特性在高分子材料低温粘结、自愈合以及加工成型等方面的应用,并对未来研究及前景进行了展望。希望通过本文加深对高分子表面低温流动行为的认识和理解,促进高分子材料加工和成型新方法和新概念的发展。  相似文献   

19.
高效电化学活性材料是实现高性能电化学储能设备的关键核心之一.如何在原子层次对电极材料微观结构进行精密调控,并发展有效合成策略和方法实现的结构控制合成,以提升器件电化学性能是备受关注的科学问题和基础研究的前沿.高分子材料理化结构丰富、官能团种类可调,已成为现代工业发展中的重要基石.特别是刚性芳杂环高分子基材料由于含有芳杂环结构,利于高温聚合且残炭率高,在碳化后具有良好的元素、形貌继承性,因此刚性芳杂环高分子基材料近年来在电化学储能领域也得到了广泛应用.系统总结了刚性芳杂环高分子基电极材料在超级电容器、钠离子电池、锂硫电池等电化学储能器件中的应用.并特别介绍了本课题组通过本征掺杂方式创制出的系列元素、形貌可控的高分子基电极材料.最后,总结并展望了高分子基材料在能源领域中未来的研究方向.  相似文献   

20.
"高分子物理学"是高分子科学中重要的组成部分,为高分子的合成工艺提供理论基础,其中包含的基础理论部分内容抽象。本文从高分子长链结构出发,依次介绍橡胶弹性理论、高分子溶液理论、玻璃化转变理论、聚合物黏弹性理论和聚合物材料的断裂理论五方面的主要观点;同时分析理解高分子溶液、玻璃-橡胶转变、黏弹特性及聚合物材料断裂的相关内容,目的是使学生掌握"高分子物理学"中关键基础理论的指导思想内涵,系统化学习这门课程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号