首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, the oxidative polycondensation reaction conditions of 2-[(4-fluorophenyl) imino methylene] phenol (FPIMP) with air oxygen and NaOCl were studied in an aqueous alkaline medium between 60 and 90 °C. Synthesized oligo-2-[(4-fluorophenyl) imino methylene] phenol was characterized by 1H-NMR, FT-IR, UV-Vis, size exclusion chromatography (SEC) and elemental analysis techniques. The yield of oligo-2-[(4-fluorophenyl) imino methylene] phenol (OFPIMP) was found to be 62.00% (for air O2 oxidant) and 97.70% (for NaOCl oxidant) at the optimum reaction conditions. According to the SEC analysis, the number-average molecular weight (Mn), weight-average molecular weight (Mw) and polydispersity index (PDI) values of OFPIMP were found to be 1370 g mol−1, 1979 g mol−1 and 1.45, using NaOCl, 2105 g mol−1, 2557 g mol−1, and 1.22, using air O2, respectively. During the oxidative polycondensation reaction, (2.88%) a part of -CHN group oxidized to carboxylic acid (-COOH). TG and TG-DTA analyses were shown to be more stable of oligo-2-[(4-fluorophenyl) imino methylene] phenol and its oligomer metal complexes than monomer against thermo-oxidative decomposition. The weight loss of OFPIMP was found to be 97.00% at 900 °C. The weight losses of OFPIMP-Co, OFPIMP-Ni OFPIMP-Cu oligomer-metal complex compounds were found to be 88.66%, 94.36% and 83.21%, respectively, at 1000 °C.  相似文献   

2.
The present work synthesizes La-Cu4FeAICO3 catalyst under microwave irradiation and characterizes its structure using XRD and IR techniques. The results show that the obtained La-Cu4FeAICO3 has a hydrotalcite structure. In the phenol hydroxylation with H2O2 catalyzed by La-Cu4FeAICO3, the effects of reaction time and phenol/H2O2 molar ratio on the phenol hydroxylation, and relationships between the initial hydroxylation rate with concentration of the catalyst, phenol, H2O2 and reaction temperature are also investigated in details. It is shown the phenol conversion can reach 50.09% (mol percent) in the phenol hydroxylation catalyzed by La-Cu4FeAICO3, under the reaction conditions of the molar ratio of phenol/H2O21/2, the amount ratio of phenol/catalyst 20, reaction temperature 343 K, reaction time 120 min, 10 ml_ distilled water as solvent. Moreover, a kinetic equation of v = k[La-Cu4FeAlCO3][C6H5OH][H2O2]. and the activation energy of E a=58.37 kJ/mol are obtained according to the kinetic studies. Due to the fact that the HO-Cu+-OH species are detected in La-Cu4FeAICO3/H2O2 system by XPS, the new mechanism about the generation of hydroxyl free radicals in the phenol hydroxylation is proposed, which is supposed that HO-Cu+-OH species are transition state in this reaction.  相似文献   

3.
The vapor-phase catalytic alkylation of phenol with dimethyl carbonate over different AlPO4 (Al/P=1), Al2O3 and AlPO4-Al2O3 (5–25 wt.% Al2O3) catalysts produces anisole (O-alkylation) as the major reaction product althougho-cresol (C-alkylation) and methylanisoles were also found. The reaction is first order in phenol while O-and C-alkylation follow parallel processes. As compared with methanol, DMC is far more effective as a methylating agent, and the methylation proceeds at a lower temperature and with higher O-alkylation selectivity.  相似文献   

4.
The reaction of phenol with cyclopropanediazonium ion generated in situ from N-cyclopropyl-N-nitrosourea by the action of K2CO3 or Cs2CO3 was studied. The main reaction pathway is diazo coupling of cyclopropanediazonium with phenol to give 4-(cyclopropyldiazenyl)phenol, and only traces of isomeric 2-(cyclopropyldiazenyl)phenol were formed. The reaction was accompanied by partial denitrogenation of the diazonium ion with formation of cyclopropyl and allyl cations which gave rise to a number of by-products. All transformation products were characterized by the 1H and 13C NMR spectra with detailed signal assignment.  相似文献   

5.
The dynamics of changes in the composition of the reaction mixture during the reaction of Na2SeSO3 and bromopropyl-substituted phenol in 50% aqueous ethanol and under the conditions of decreasing EtOH concentration in the reaction medium was studied. Convenient methods for the synthesis of 3-(4-hydroxyaryl)propyl selenosulfates and the corresponding diselenides were proposed. Symmetrical and unsymmetrical selenides (derivatives of alkylated phenols and pyrocatechol) were synthesized.  相似文献   

6.
In this study, MeAPO-25 (Me = Fe, Cu, Mn) molecular sieves were first synthesized by a vapor phase transport method using tetramethyl guanidine as the template and applied to hydroxylation of phenol. The zeolites were characterized by XRD, SEM, FT-IR, and DR UV–Vis. As a result, MeAPO-21 and MeAPO-15 were synthesized by changing the Me/Al ratio. UV–Visible diffuse reflectance study suggested incorporation of heteroatoms into the framework and FT-IR study also supported these data. Effects of heteroatoms, contents of Me in MeAPO-25, reaction temperature, phenol/H2O2 mole ratios, reaction time and concentration of catalyst on the conversion of phenol, as well as on the selectivity were studied. FeAPO-25 exhibited a high catalytic activity at the mole ratio of FeO and Al2O3 equal to 0.1 in the synthesis gel, giving the phenol conversion of 88.75% and diphenols selectivity of 66.23% at 60°C within 3 h [n(phenol)/n(H2O2) = 0.75, m(FeAPO-25)/m(phenol) = 7.5%]. Experimental results indicated that the FeAPO-25 molecular sieve was a fairly promising candidate for the application in hydroxylation of phenol.  相似文献   

7.
In this study we report the preparation of RuO2/Fe3O4@nSiO2@mSiO2 core–shell powder mesoporous catalyst for heterogeneous oxidation of phenol by peroxymonosulfate (PMS) as oxidant. The properties of this supported catalyst were characterized by SEM–EDS (scanning electron microscopy–energy dispersive X-ray spectroscopy), XRD (powder X-ray diffraction), TEM (transmission electron microscopy), and nitrogen adsorption–desorption. It is found that using ruthenium oxide-based catalyst is highly effective in activating PMS for related sulfate radicals. The effects of catalyst loading, phenol concentration, PMS concentration, reaction temperature, and reusability of the as-prepared catalyst on phenol degradation were investigated. In RuO2/Fe3O4@nSiO2@mSiO2 mesoporous catalyst, Oxone (PMS) was effectively activated and 100 % phenol degradation occurred in 40 min. The magnetic RuO2/Fe3O4@nSiO2@mSiO2 catalyst was facility separated from the solution by an external magnetic field. To regenerate the deactivated catalyst and improve its catalytic properties, three different methods involving annealing in air, washing with water, and applying ultrasonics were used. The catalyst was recovered thoroughly by heat treatment.  相似文献   

8.
The electrooxidation of phenol has been studied on C-felt electrode by using cyclic voltammetry (CV) technique. The kinetic parameters electrooxidation reaction such as oxidation potential at zero scan rate (E 0), temperature coefficient (dE/dt), reaction order (n), activation energy (E a), calculated from variation of oxidation peak potentials and current with potential scan rate, phenol concentration and related temperature. Phenol reaction path way (either degradation or polymerization and forming high molecular weight species) and potential residence of phenol degradation are determined by applying different electrolysis voltage values (0.630, 1, 2 and 3 V) in acidic phenol solution (0.0125 M Phenol + 0.5 M H2SO4). In addition, decrease in the phenol concentration is monitored in this solution during 6 hours with 1 hour time period and from this data linear relation ship was found to between applied potential and phenol removal efficiency. Published in Russian in Elektrokhimiya, 2009, Vol. 45, No. 3, pp. 281–288. The article is published in the original.  相似文献   

9.
Pyridine(Py)-modified Keggin-type vanadium-substituted heteropoly acids (Py n PMo10V2O40, n=1 to 5) were prepared by a precipitation method as organic/inorganic hybrid catalysts for direct hydroxylation of benzene to phenol in a pressured batch reactor and their structures were detected by FT-IR. Among various catalysts, Py3PMo10V2O40 exhibits the highest catalytic activity (yield of phenol, 11.5%), without observing the formation of catechol, hydroquinone and benzoquinone in the reaction with 80 vol% aqueous acetic acid, molecular oxygen and ascorbic acid used as the solvent, oxidant and reducing reagent, respectively. Influences of reaction temperature, reaction time, oxygen pressure, amount of ascorbic acid and catalyst on yield of phenol were investigated to obtain the optimal reaction conditions for phenol formation. Pyridine can greatly promote the catalytic activity of the Py-free catalyst (H5PMo10V2O40), mostly because the organic π electrons in the hybrid catalyst may extend their conjugation to the inorganic framework of heteropoly acid and dramatically modify the redox properties, at the same time, pyridine adsorbed on heteropoly acids can promote the effect of “pseudo-liquid phase”, thus accounting for the enhancement of phenol yield. Supported by the National Natural Science Foundation of China (Grant Nos. 20476046 and 20776069) and the “Qinglan” Project of Jiangsu Province for Young Researchers  相似文献   

10.
A facile synthesis of α-zirconium phosphate(ZP) nanoparticles as an effective, eco-friendly, and recyclable solid acid catalyst is reported. Polyvinylpyrrolidone(PVP) and polyvinyl alcohol(PVA) were used as organic matrix as dispersing agents and served as a template for the nanoparticles. Hydrogen bonds between ZP and PVA or PVP, along the polymer chains, appear to play an important role for improving the dispersion of in situ formed ZP. Following calcination of PVA/ZP or PVP/ZP, pure hexagonal ZP nanoparticles were obtained. The catalysts were characterized by nitrogen sorption, inductively coupled plasma optical emission spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy(FTIR), scanning electron microscopy, and transmission electron microscopy. Pyridine-FTIR and temperature-programmed desorption of NH3 suggest the presence of Brnsted acid sites. The acidic properties of the catalyst were studied in Friedel-Crafts alkylation of phenol by tert-butanol, producing 2-tert-butylphenol, 4-tert-butylphenol, and 2,4-ditert-butylphenol. The alkylation reaction was performed in the presence of catalysts P2O5/Al2O3, P2O5/SiO2, α-ZrP(prepared in the absence of the polymers), and various ionic liquids. The use of the hexagonal ZP nanoparticle catalyst afforded an excellent phenol conversion(86%) and selectivity towards 4-tert-butylphenol(83%) under optimized reaction conditions. The catalyst was easily recovered from the reaction mixture, regenerated, and reused at least four times without significant loss in the catalytic activity.  相似文献   

11.
A greener and more sensitive spectrophotometric procedure has been developed for the determination of phenol and o-cresol that exploits an aqueous two-phase system (ATPS) using a liquid-liquid extraction technique. An ATPS is formed mostly by water and does not require organic solvent. Other ATPS components used in this study were the polymer, polyethylene oxide, and some salts (i.e., Li2SO4, Na2SO4 or K2HPO4 + KOH). The method is based on the reaction between phenol, sodium nitroprusside (NPS) and hydroxylamine hydrochloride (HL) in an alkaline medium (pH 12.0), producing the complex anion [Fe2(CN)10]10− that spontaneously concentrates in the top phase of the system. The linear range was 1.50-500 μg kg−1 (R ≥ 0.9997; n = 8) with coefficients of variation equal to 0.38% for phenol and 0.30% for o-cresol (n = 5). The method yielded limits of detection (LODs) of 1.27 and 1.88 μg kg−1 and limits of quantification (LOQs) of 4.22 and 6.28 μg kg−1 for phenol and o-cresol, respectively. Recoveries between 95.7% and 107% were obtained for the determination of phenol in natural water and wastewater samples. In addition, excellent agreement was observed between this new ATPS method and the standard 4-aminoantipyrine (4-AAP) method.  相似文献   

12.
The cationic polymerization of isobutylene initiated by 4-(2-hydroxy-2-propyl)phenol/BCl3 system results mainly in α-phenol-ω-chlorooligoisobutylene; however p-(2-chloro-2,4-dimethyl-4-pentyl)phenol is present in all cases. α-Methyl-ω-chlorooligoisobutylene is formed only when the temperature is below?50°C; it results from initiation by the phenol/BCl3 system. Thermal dehydrochlorination of α-phenol-ω-chlorooligoisobutylene is quantitative and leads to a mixture of isomeric ω-unsaturated oligoisobutylenes. α-Methyl-ω-phenololigoisobutylene is prepared by the Friedel—Crafts reaction between industrial unsaturated oligoisobutylene and phenol in the presence of SnCl4 at ?30°C; the reaction is quantitative between ?50 and ?30°C degradation takes place. © 1993 John Wiley & Sons, Inc.  相似文献   

13.
The oxidative polycondensation of 4-[(pyridin-3-ylimino)methyl]phenol (4-PIMP) with O2, H2O2, and NaOCl was studied in an aqueous alkaline medium between 50°C and 90°C. Oligo-4-[(pyridin-3-ylimino)methyl]phenol (O-4-PIMP) prepared was characterized by 1H-NMR, 13C-NMR, FT-IR, UV-VIS, size-exclusion chromatography, and elemental and thermal analyses techniques. At the optimum reaction conditions, the yield of O-4-PIMP was 18.9%, 39.4%, and 46.8% using H2O2, O2, and NaOCl oxidant, respectively. According to the TG analysis, the initial degradation temperature of O-4-PIMP was 218°C, which was by 50°C higher than that of 4-PIMP. Thermal analyses of 4-PIMP and O-4-PIMP were carried out in N2 atmosphere at 15–1000°C. The highest occupied molecular orbital, the lowest unoccupied molecular orbital, and electrochemical energy gaps of 4-PIMP and O-4-PIMP were determined from the onset potentials for n-doping and p-doping, respectively. Also, optical band gaps of 4-PIMP and O-4-PIMP were determined according to UV-VIS measurements.  相似文献   

14.
Synthesis of 4-(2-methoxyethyl)phenol (5) from phenol is described. The derived aryloxyallyl ether (6) is converted into (±)-metoprolol (10) by involving dihydroxylation reaction with OsO4 and NMO.  相似文献   

15.
ROCHF2-type fluorinated ethers were synthesized by the reaction of hexafluoropropene oxide (HFPO) with alcohol or phenol. In this reaction, although the insertion reaction of difluorocarbene to OH bond and the nucleophilic attack of alcohol or phenol to HFPO were competition, the insertion reaction proceeded predominantly to give fluorinated ether in the case of low nucleophilic alcohol or phenol. In addition, high reaction pressure is advantageous to the selectivity of the fluorinated ethers in the reaction of HFPO with (CF3)2CHOH or C6F5OH.  相似文献   

16.
Reactions of diethylzinc and phenols (phenol, 2-ethylphenol, 2-chlorophenol, 3-ethylphenol, 3-chlorophenol, 4-ethylphenol and 4-chlorophenol) have been carried out in tetrahydrofuran and 1,4-dioxane as solvents. Monomeric ethylzinc phenoxide has been found to be a product of the diethylzinc and phenol (1:1) reaction in 1,4-dioxane solution. Kinetic studies on the ethylzinc phenoxides and phenols reaction in tetrahydrofuran solution established the rate constants and the SEi mechanism of the reaction.  相似文献   

17.
A detailed chemical kinetic model has been developed to theoretically predict the pyrolysis behavior of phenol‐type monolignol compounds (1‐(4‐hydroxyphenyl)prop‐2‐en‐1‐one, HPP; p‐coumaryl alcohol, 3‐hydroxy‐1‐(4‐hydroxyphenyl)propan‐1‐one, HHPP; 1‐(4‐hydroxyphenyl)propane‐1,3‐diol, HPPD) released from the primary heterogeneous pyrolysis of lignin. The possible thermal decomposition pathways involving unimolecular decomposition, H‐addition, and H‐abstraction by H and CH3 radicals were investigated by comparing the activation energies calculated at the M06–2X/6–311++G(d,p) level of theory. The results indicated that all phenol‐type monolignol compounds convert to phenol by side‐chain cleavage. p‐Coumaryl alcohol decomposes into phenol via the formation of 4‐vinylphenol, whereas HPP, HHPP, and HPPD decompose into phenol via the formation of 4‐hydroxybenzaldehyde. The pyrolytic pathways focusing on the reactivity of the hydroxyl group in HPP and producing cyclopentadiene (cyc‐C5H6) were also investigated. The transition state theory (TST) rate constants for all the proposed elementary reaction channels were calculated at the high‐pressure limit in the temperature range of 300–1500 K. The kinetic analysis predicted the two favorable unimolecular decomposition pathways in HPP: the one is the dominant channel below 1000 K to produce cyc‐C5H6, and the other is above 1000 K to yield phenol (C6H5OH).  相似文献   

18.
The reaction of phenols with nitrite (nitrous acid HONO, or its conjugated base, NO2?) is of importance in stomach fluids (low pH) and in atmospheric hydrometeors (mild acid and basic pH). The initial reaction associated with the oxidation/nitration of 4‐substitued phenols promoted by HONO/NO2 depends on the pH of the solution. At low pH, the initial step involves the reaction between HONO and phenol, whereas at basic conditions this involves an electron transfer from the phenoxy anion to nitrogen dioxide (NO2) producing the nitrite anion. The rate of both processes is determined by the donor capacity of the substituent at the 4‐position of the phenol, and the data obtained at pH 2.3 follow a linear Hammett‐type correlation with a slope equal to –1.23. The partition of the gaseous intermediates (NO and NO2) makes the rate of HONO‐mediated oxidation dependent on their gas–liquid distribution. At low pH, the main process is phenol oxidation, even in oxygen‐free conditions, and the presence of any 4‐substituted phenol decreases the rate of HONO auto‐oxidation.  相似文献   

19.
Fe-FSM-16 and Fe-containing mesoporous materials (Fe-JLU-15) prepared by using semifluorinated surfactant as a template, have been synthesized by microwave-hydrothermal (M-H) process and characterized by several spectroscopic techniques. The catalytic activity of these materials was tested for the phenol hydroxylation and wet phenol oxidation with H2O2 under mild reaction conditions. The effect of pH, H2O2/PhOH molar ratio and stability of the catalyst on the oxidation process was also investigated. Phenol oxidation and H2O2 decomposition show that the Fe-JLU-15 is more active than Fe-FSM-16 and more stable in aqueous solution. The total amount of dissolved iron is less than 5 wt% of the iron initially contained in the catalyst. In phenol hydroxylation, these two solids can effectively catalyze the phenol hydroxylation. Catechol and hydroquinone were observed as the major products, with a difference in the product distribution for these solids. The Fe-JLU-15 has a high selectivity for catechol (63.5 % phenol conversion, CAT/HQ = 2.7) while the Fe-FSM-16 shows a high selectivity for hydroquinone (56.8 % phenol conversion, CAT/HQ < 1) under the same reaction conditions.  相似文献   

20.
以十二胺(DDA)或十八胺(ODA)为模板剂,采用焙烧或萃洗法去除模板剂制备中孔分子筛(HMS).X射线粉末衍射(XRD)及氮吸附表征结果说明,以十二胺为模板剂且采用焙烧法去除模板剂制备的分子筛具有明显的XRD介孔衍射峰,而且其氮吸附曲线具有典型的IV类等温线特征及H1型脱附滞后环,这属于典型的介孔材料特征.以此分子筛为载体,通过F—C反应将磺酸铁酞菁(FePcS)修饰在HMS上,得到新型光催化剂.催化剂的BET比表面积为675.1m2·g-1,平均孔径为5.78nm,孔容为0.587cm3·g-1,且仍保持着鲜明的介孔特征.最后在模拟可见光照射下应用催化剂处理浓度高达1000mg·L-1的模拟苯酚废水,反应400min后,苯酚的转化率达到85%以上,反应溶液pH值也由4.52降到2.65,表明有酸类降解中间产物生成,反应最终苯酚转化率接近100%,总有机碳(TOC)的去除率达81%以上.催化剂表现出了良好的催化降解有机废水的性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号