首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 448 毫秒
1.
In this study, a numerical tool is introduced—based on thermodynamic and kinetic separation theory—for validating the regeneration of monolithic rod columns after cutting their inlet sections. A long‐used RP‐18e monolithic column was deemed to be unfit for further coffee analysis because of poor separation performance. The columns brownish inlet section was physically removed with a lathe, leaving a clean white inlet section. The original and regenerated columns were extensively analyzed and compared using numerical tools for processing adsorption data. The perturbation peak method was used to measure the adsorption isotherm of phenol on the original and regenerated monolith and the adsorption energy distributions were calculated for identifying any change in the degree of heterogeneity. Although peak shapes improved considerably after regeneration, no significant differences were found in the detailed characterization of the processed adsorption data between the original column and the regenerated one. This indicates that the removal of a section of the monolithic bed can be undertaken without damaging the column and columns in which their inlet head sections are contaminated may still function with normal adsorption behavior. In addition, the combined thermodynamic and kinetic methodology could accurately be used to evaluate any regeneration method of columns.  相似文献   

2.
Summary It is shown that the flow in chromatography is nearly always laminar in nature. Starting from the Darcy equation, expressions are given for the flow rate in both gas and liquid chromatography columns. The concepts of specific permeability, chromatographic permeability and column resistance factor are discussed for packed as well as open tubular columns. The experimental determination of all these factoers is demonstrated. The influence of the shape and pore volume of porous and non-porous supports on the column resistance factor and the chromatographic permeability is discussed.  相似文献   

3.
《Analytical letters》2012,45(10):2095-2152
Abstract

A great variety of columns for liquid chromatography (LC) are available in dimensions ranging from industrial scale to micro‐bore, nano‐bore, and capillary size, and on‐chip columns. The columns may be used in various liquid chromatography modes or in capillary electrochromatography, depending on the support materials and stationary phase chemistry. Every year many new column types are introduced on the market, with improved selectivity and efficiency, long lifetime, and mobile phase compatibility, intended for general use, for liquid chromatography/mass spectrometry (LC/MS) applications, proteomic research, or for the analysis of other specific sample types. Considerable improvement in pH, high‐temperature, and high‐pressure stability of new column types, together with advances in the instrumentation, enabled introduction of capillary, high‐temperature, and ultra‐high‐pressure HPLC into routine practice. Even though reversed‐phase mode is still by the most widely used in contemporary LC, applications of other separation modes (such as ion, normal‐phase, or high‐interaction liquid chromatography (HILC)) have become more frequent recently, because of unique separation selectivity for certain sample types.

Characterization of column quality is not a simple task, because a number of factors should be taken into account, that affect the selectivity, efficiency and resolution of sample separation and the reproducibility of chromatographic data. These include the type of the support, the arrangement and density of the stationary phase on the adsorbent surface, the homogeneity of the chromatographic bed, etc. Various physicochemical techniques are used for characterization of the properties of column packings however, most of them are suitable for bulk materials only and cannot be directly applied for commercial columns without damaging them. Not to destroy the columns, often precious and expensive, practicing chromatographers can apply chromatographic methods to characterize columns and evaluate their analytical suitability under real‐life conditions, where the intermolecular interactions between the analytes, the stationary phase, and the mobile phases affect the retention. The present review reports various chromatographic tests and strategies available for column evaluation.  相似文献   

4.
Pre-packed columns have been increasingly used in process development and biomanufacturing thanks to their ease of use and consistency. Traditionally, packing quality is predicted through rate models, which require extensive calibration efforts through independent experiments to determine relevant mass transfer and kinetic rate constants. Here we propose machine learning as a complementary predictive tool for column performance. A machine learning algorithm, extreme gradient boosting, was applied to a large data set of packing quality (plate height and asymmetry) for pre-packed columns as a function of quantitative parameters (column length, column diameter, and particle size) and qualitative attributes (backbone and functional mode). The machine learning model offered excellent predictive capabilities for the plate height and the asymmetry (90 and 93%, respectively), with packing quality strongly influenced by backbone (∼70% relative importance) and functional mode (∼15% relative importance), well above all other quantitative column parameters. The results highlight the ability of machine learning to provide reliable predictions of column performance from simple, generic parameters, including strategic qualitative parameters such as backbone and functionality, usually excluded from quantitative considerations. Our results will guide further efforts in column optimization, for example, by focusing on improvements of backbone and functional mode to obtain optimized packings.  相似文献   

5.
The synthesis and chromatographic behavior of an analytical size mixed‐mode bonded silica monolith was investigated. The monolith was functionalized by an in situ modification process of a bare silica rod with chloro(3‐cyanopropyl)dimethyl silane and chlorodimethyl propyl phenyl silane solutions. These ligands were selected in order to combine both resonance and nonresonance π‐type bonding within a single separation environment. Selectivity studies were undertaken using n‐alkyl benzenes and polycyclic aromatic hydrocarbons in aqueous methanol and acetonitrile mobile phases to assess the methylene and aromatic selectivities of the column. The results fit with the linear solvent strength theory suggesting excellent selectivity of the column was achieved. Comparison studies were performed on monolithic columns that were functionalized separately with cyano and phenyl ligands, suggesting highly conjugated molecules were able to successfully exploit both of the π‐type selectivities afforded by the two different ligands on the mixed‐mode column.  相似文献   

6.
Hydrophilic interaction liquid chromatography is a separation technique suitable for the separation of moderately and highly polar compounds. Various stationary phases (SPs) for hydrophilic interaction liquid chromatography are commercially available. While the SPs based on the same type of ligand are available from different providers, they can display a distinct retention characteristics and separation selectivity. The current work is focused on characterization and comparison of the separation systems of two amide‐based HPLC columns from two producers, i.e. XBridge Amide column and TSK gel Amide‐80 column. Several characterization procedures (tests) were used to investigate the differences between these columns. The chromatographic behavior of selected analytes indicates that multimodal interactions are responsible for retention and separation on these columns. Multiple testing approaches were used in order to reveal subtle differences between the SPs. Both amide‐based columns showed certain differences in retention, selectivity, and plate counts. Based on the tests used in this study, we conclude that the investigated columns provide a different degree of H‐bonding interactions.  相似文献   

7.
This is the third part of a three‐part series of papers. In Part I, we presented a method for determining the actual effective geometry of a reference column as well as the thermodynamic‐based parameters of a set of probe compounds in an in‐house mixture. Part II introduced an approach for estimating the actual effective geometry of a target column by collecting retention data of the same mixture of probe compounds on the target column and using their thermodynamic parameters, acquired on the reference column, as a bridge between both systems. Part III, presented here, demonstrates the retention time transfer and prediction from the reference column to the target column using experimental data for a separate mixture of compounds. To predict the retention time of a new compound, we first estimate its thermodynamic‐based parameters on the reference column (using geometric parameters determined previously). The compound's retention time on a second column (of previously determined geometry) is then predicted. The models and the associated optimization algorithms were tested using simulated and experimental data. The accuracy of predicted retention times shows that the proposed approach is simple, fast, and accurate for retention time transfer and prediction between gas chromatography columns.  相似文献   

8.
The transfer of retention times based on thermodynamic models between columns can aid in separation optimization and compound identification in gas chromatography. Although earlier investigations have been reported, this problem remains unsuccessfully addressed. One barrier is poor predictive accuracy when moving from a reference column or system to a new target column or system. This is attributed to challenges associated with the accurate determination of the effective geometric parameters of the columns. To overcome this, we designed least squares‐based models that account for geometric parameters of the columns and thermodynamic parameters of compounds as they partition between mobile and stationary phases. Quasi‐Newton‐based algorithms were then used to perform the numerical optimization. In this first of three parts, the model used to determine the geometric parameters of the reference column and the thermodynamic parameters of compounds subjected to separation is introduced. As will be shown, the overall approach significantly improves the predictive accuracy and transferability of thermodynamic data (and retention times) between columns of the same stationary phase chemistry. The data required for the determination of the thermodynamic parameters and retention time prediction are obtained from fast and simple experiments. The proposed model and optimization algorithms were tested and validated using simulated and experimental data.  相似文献   

9.
The promising technique of controlling chromatographic selectivity by the adjustment of individual column temperatures in systems of series-coupled columns is investigated by means of a general model incorporating the effects of temperature and mobile phase compressibility. Expressions are derived for the linear flow velocity, the effective partition coefficient and the retention time for a system of n columns assuming an ideal mobile phase gas, under conditions of constant overall pressure drop and neglect of the temperature dependence of the mobile phase viscosity. The results indicate the importance of thermodynamic parameters, relative to parameters influencing the linear flow velocity, in determining the effect of temperature on the chromatographic retention time. Numerical results are illustrated graphically for two-column systems which are discussed in greater detail. Switching of columns is also discussed and it is shown that even if thermodynamic contributions remain unchanged, non-thermodynamic contributions have a notice-able effect.  相似文献   

10.
To evaluate the effect of the preparation strategy on the enantioseparation performance of β‐cyclodextrin‐functionalized monoliths, a series of β‐cyclodextrin‐functionalized organic polymeric monolithic columns were prepared through two‐step, single‐step, and one‐pot approaches, using the same cyclodextrin, linker–spacer, and crosslinker. Physicochemical characterization of the columns was carried out by determining the morphology, β‐cyclodextrin density, permeability, and chromatographic efficiency. For each type of monolithic column, the enantioresolution of 22 chiral compounds, including mandelic acid derivatives, nonsteroidal anti‐inflammatory drugs, N‐derivatized amino acids, and herbicides, was comparatively studied under optimum chromatographic conditions. The β‐cyclodextrin‐functionalized monolithic columns prepared through the one‐pot approach exhibited higher enantioresolution for most chiral compounds, and they have the advantage of good controllability and simple preparation. On the other hand, the enantioresolution obtained on columns prepared through the single‐step approach was quite unsatisfactory, and therefore the effect of using different linking spacers and crosslinkers was studied. A significant improvement of enantioresolution for 2‐chloro‐mandelic acid was obtained by using N ,N‐methylenebisacrylamide instead of ethylene dimethacrylate as the crosslinker in the single‐step preparation.  相似文献   

11.
Heat due to viscous friction is generated in chromatographic columns. When these columns are operated at high flow rates, under a high inlet pressure, this heat causes the formation of significant axial and radial temperature gradients. Consequently, these columns become heterogeneous and several physico-chemical parameters, including the retention factors and the parameters of the mass transfer kinetics of analytes are no longer constant along and across the columns. A robust modeling of the distributions of the physico-chemical parameters allows the analysis of the impact of the heat generated on column performance. We developed a new model of the coupled heat and mass transfers in chromatographic columns, calculated the axial and radial temperature distributions in a column, and derived the distributions of the viscosity and the density of the mobile phase, hence of the axial and radial mobile phase velocities. The coupling of the mass and the heat balances in chromatographic columns was used to model the migration of a compound band under linear conditions. This process yielded the elution band profiles of analytes, hence the column efficiency under two different sets of experimental conditions: (1) the column is operated under natural convection conditions; (2) the column is dipped in a stream of thermostated fluid. The calculated results show that the column efficiency is remarkably lower in the second than in the first case. The inconvenience of maintaining constant the temperature of the column wall (case 2) is that retention factors and mobile phase velocities vary much more significantly across the column than if the column is kept under natural convection conditions (case 1).  相似文献   

12.
Summary Comparisons of columns, column packings and column packing methods are made difficult and sometimes invalidated by differences and inadequacies in the test procedures used and the experimental data recorded. This paper reviews test procedures and recommends standards for a) the experimental and test parameters which must be recorded in order to enable comparisons to be made from laboratory to laboratory, b) the group of chromatographic parameters which best represent column performance for comparative purposes, with methods for their calculation, c) test solutes and eluents for some different types of packing materials. A computer program in BASIC is given which converts the experimental parameters into relevant chromatographic parameters.  相似文献   

13.
This paper presents an extension of a previous investigation in which the behavior of nonpolar compounds in temperature-programmed gas chromatographic runs was predicted using thermodynamic (entropy and enthalpy) parameters derived from isothermal runs. In a similar manner, entropy and enthalpy parameters were determined for a Grob standard mixture of compounds with widely varying chemical characteristics. These parameters were used to predict the retention times and chromatographic behaviors of the compounds on four gas chromatography capillary columns: three that had phenyl-based stationary phases (with degrees of substitution of 0%, 5% and 50%) and one with (50%) cyanopropyl substitution. The predictions matched data empirically obtained from temperature-programmed chromatographic runs for all of the compounds extremely well, despite the wide variations in polarity of both the compounds and stationary phases. Thus, the results indicate that such simulations could greatly reduce the time and material costs of chromatographic optimizations.  相似文献   

14.
The gas chromatographic behavior of selected linear and non-linear alcohols and amines was investigated using four capillary columns containing phenyl substitution levels of 0%, 5%, and 50% and 50% cyanopropyl substitution. In a previous study, the positions of specific compounds inside the capillary column were iteratively modeled using only two thermodynamic parameters (ΔH and ΔS). The present study addresses the validation of the two-parameter model for retention time prediction for selected alcohols and amines using thermodynamic data obtained from as few as two data points. The difference between predicted and observed retention times under different temperature conditions was generally less than 1% of the experimental value and the predicted order of elution was correct in the used model.  相似文献   

15.
Summary Column characteristics affecting the chromatographic behavior of glass and siliceous glass (fused silica) capillary columns include the dimensional uniformity of the column, the physical and chemical characteristics of the column wall and the characteristics of the liquid phase. In the case of the coated column the uniformity and thickness of the liquid phase film are the most important criteria affecting column reproducibility. The paper discusses these factors and their influence on column performance.Presented in part at the Symposium on Standardized Materials for Chromatography, 181 st National American Chemical Society Meeting, Atlanta, Georgia, March 29–April 3, 1981.  相似文献   

16.
17.
Monolithic capillary columns have been prepared in fused‐silica capillaries by radical co‐polymerization of ethylene dimethacrylate and butyl methacrylate in the presence of porogen solvent mixtures containing various concentration ratios of 1‐propanol, 1,4‐butanediol, and water with azobisisobutyronitrile as the initiator of the polymerization reaction. The through pores in organic polymer monolithic columns can be characterized by “equivalent permeability particle size”, and the mesopores with stagnant mobile phase by “equivalent dispersion particle size”. Increasing the concentration of propanol in the polymerization mixture diminishes the pore volume and size in the monolithic media and improves the column efficiency, at a cost of decreasing permeability. Organic polymer monolithic capillary columns show similar retention behaviour to packed alkyl silica columns for compounds with different polarities characterized by interaction indices, Ix, but have different methylene selectivities. Higher concentrations of propanol in the polymerization mixture increase the lipophilic character of the monolithic stationary phases. Best efficiencies and separation selectivities were found for monolithic columns prepared using 62–64% propanol in the porogen solvent mixture. To allow accurate characterization of the properties of capillary monolithic columns, the experimental data should be corrected for extra‐column contributions.  相似文献   

18.
李莉  李硕  王海燕  孙磊 《色谱》2022,40(2):190-197
以化妆品中23种防腐剂检测方法为例,探讨色谱柱选择对液相色谱方法测定结果的影响。参照《化妆品安全技术规范》甲基异噻唑啉酮等23个组分的检验方法,在2台不同的高效液相色谱仪上用15款不同品牌、型号的C18色谱柱检测23种防腐剂,计算色谱峰的理论塔板数和分离度,对23种组分的分离效果进行分析,并应用USP (United States Pharmacopeia)数据库和PQRI (Product Quality Research Institute)数据库等2种等效色谱柱选择方法,对不同色谱柱的分离效果及等效性进行评价和预测。实验结果表明,15款色谱柱对23种防腐剂的分离效果差异显著,仅有2款色谱柱可以实现23种组分的完全分离。USP和PQRI数据库中2种等效色谱柱选择方法均无法预测出合适的等效色谱柱,对23种防腐剂的液相色谱分析参考价值均较小。色谱柱是影响23种防腐剂液相色谱法测定结果准确性的关键因素,有关实验室在应用该方法时,应考虑色谱柱选择性差异。化妆品基质复杂,如何在现有研究成果的基础上,开发色谱柱的筛选和预测评价体系,进而指导实际样品的分离是下一步研究的重点、难点。建议有关部门在制修订检测方法时,注重色谱柱的耐用性考察,完善系统适应性指标,细化色谱柱分类和增加描述信息,指导色谱柱的合理选择,从而规避由于色谱柱使用过程中选择依据缺失而导致测定结果不准确的风险。  相似文献   

19.
Summary This paper focuses attention on the potentially larger signal-to-noise ratios produced by microbore columns in comparison with conventional columns. The increased chromatographic signals by the application of microbore columns are due to the lower chromatographic dilution of elution profiles which are proportional to the square of the column inner radius. Generally less than 1μl sample should be injected into microbore systems to obtain the full benefit of the column performance. However, since more sample can be loaded on conventional columns compared to microbore columns the advantage of improved signal-to-noise ratio can only be realised in situations where very little sample is available. To inject more than 1μl sample, at the same time avoiding extra band-broadening effects, suitable injection techniques must be available. In this study three injection methods for microbore systems that meet this condition, are studied and compared.  相似文献   

20.
In present study, a multiple columns and detectors liquid chromatography system for analysis of global components in traditional Chinese medicines was developed. The liquid chromatography system was consist of three columns, including size exclusion chromatography column, hydrophilic interaction chromatography column, and reversed phase chromato‐graphy column, and three detectors, such as diode array detector, evaporative light scattering detector, and mass spectrometry detector, based on column switching technique. The developed multiple columns and detectors liquid chromatography system was successfully applied to the analysis of global components, including macromolecular (polysaccharides), high (nucleosides and sugars)‐, and low (triterpenes)‐polarity small molecular compounds in Ganoderma, a well‐known Chinese medicinal mushroom. As a result, one macromolecular chromatographic peak was found in two Ganoderma species, 19 components were identified in Ganoderma lucidum (two sugars, three nucleosides, and 14 triterpenes), and four components (two sugars and two nucleosides) were identified in Ganoderma sinense. The developed multiple columns and detectors liquid chromatography system was helpful to understand comprehensive chemical characters in TCMs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号