首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 63 毫秒
1.
A series of pH/redox dual stimuli‐responsive poly(2‐methacryloyloxyethyl phosphorylcholine)25block‐poly(l ‐histidine)n (p[MPC])25b‐p[His]n, n = 20, 35, 50, and 75) copolymers consisting of a pH‐responsive p(His)n block and a biocompatible phospholipid analog p(MPC) block connected by a redox‐responsive disulfide linker have been synthesized. The block copolymers are self‐assembled into uniform micelles (~100 nm) in which doxorubicin (Dox) is efficiently encapsulated. The in vitro release profile shows an enhanced release of Dox at low pH (5.0) in 10 mM glutathione (GSH). The in vitro cell viability assays performed using various cell lines show that the blank hybrid micelles have no acute or intrinsic toxicity. A pH‐dependent cytotoxicity is observed with the Dox‐loaded micelles, especially at pH 5.0. Moreover, confocal microscopy images and flow cytometry results show the pH‐dependent cellular uptake of Dox‐loaded micelles. Therefore, the Dox‐loaded micelles can be considered a good candidate for cancer therapy. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2061–2070  相似文献   

2.
We report molecular interaction‐driven self‐assembly of supramolecularly engineered amphiphilic macromolecules (SEAM) containing a single supramolecular structure‐directing unit (SSDU) consisting of an H‐bonding group connected to a naphthalene diimide chromophore. Two such SEAMs, P1‐50 and P2‐50, having the identical chemical structure and hydrophobic/hydrophilic balance, exhibit distinct self‐assembled structures (polymersome and cylindrical micelle, respectively) due to a difference in the H‐bonding group (hydrazide or amide, respectively) of the single SSDU. When mixed together, P1‐50 and P2‐50 adopted self‐sorted assembly. For either series of polymers, variation in the hydrophobic/hydrophilic balance does not alter the morphology reconfirming that self‐assembly is primarily driven by directional molecular interaction which is capable of overruling the existing norms in packing parameter‐dependent morphology control in an immiscibility‐driven block copolymer assembly.  相似文献   

3.
Mesoporous iron‐oxide nanoparticles (mNPs) were prepared by using a modified nanocasting approach with mesoporous carbon as a hard template. mNPs were first loaded with doxorubicin (Dox), an anticancer drug, and then coated with the thermosensitive polymer Pluronic F108 to prevent the leakage of Dox molecules from the pores that would otherwise occur under physiological conditions. The Dox‐loaded, Pluronic F108‐coated system (Dox@F108‐mNPs) was stable at room temperature and physiological pH and released its Dox cargo slowly under acidic conditions or in a sudden burst with magnetic heating. No significant toxicity was observed in vitro when Dox@F108‐mNPs were incubated with noncancerous cells, a result consistent with the minimal internalization of the particles that occurs with normal cells. On the other hand, the drug‐loaded particles significantly reduced the viability of cervical cancer cells (HeLa, IC50=0.70 μm ), wild‐type ovarian cancer cells (A2780, IC50=0.50 μm ) and Dox‐resistant ovarian cancer cells (A2780/AD, IC50=0.53 μm ). In addition, the treatment of HeLa cells with both Dox@F108‐mNPs and subsequent alternating magnetic‐field‐induced hyperthermia was significantly more effective at reducing cell viability than either Dox or Dox@F108‐mNP treatment alone. Thus, Dox@F108‐mNPs constitute a novel soft/hard hybrid nanocarrier system that is highly stable under physiological conditions, temperature‐responsive, and has chemo‐ and thermotherapeutic modes of action.  相似文献   

4.
Paclitaxel‐loaded poly(ethylene glycol)‐b‐poly(l ‐lactide (LA)) (PEG‐PLA) micelles were prepared by two methods. One is physical encapsulation of paclitaxel in micelles composed of a PEG‐PLA block copolymer and the other is based on a PEG‐PLA–paclitaxel conjugate, abbreviated as “conjugate micelles”. Their physicochemical characteristics, e.g. critical micelle concentration (CMC), morphology, and micelle size distribution were then evaluated by means of fluorescence spectroscopy, scanning electron microscopy (SEM), and dynamic light scattering (DLS). The results show that the CMC of PEG‐PLA–paclitaxel and PEG‐PLA are 6.31 × 10?4 and 1.78 × 10?3 g L?1, respectively. Both micelles assume a spherical shape with comparable diameters and have unimodal size distribution. Moreover, invitro drug delivery behavior was studied by high performance liquid chromatography (HPLC). The antitumor activity of the paclitaxel‐loaded micelles against human liver cancer H7402 cells was evaluated by 3‐(4,5‐Dimethylthiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide (MTT) method. The conjugate micelles show a lower burst release during the initial stage and higher accumulative release amount of paclitaxel after a period of time while the encapsulated ones behave in the opposite way. Both the paclitaxel‐loaded micelles showed comparable anticancer efficacy with the free drug. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
Well‐defined poly(ethylene glycol)‐b‐allyl functional polylactide‐b‐polylactides (PEG‐APLA‐PLAs) are synthesized through sequential ring‐opening polymerization. PEG‐APLA‐PLAs that have amphiphilic properties and reactive allyl side chains on their intermediate blocks are successfully transferred to core–shell interface cross‐linked micelles (ICMs) by micellization and UV‐initiated irradiation. ICMs have demonstrated enhanced colloidal stability in physiological‐mimicking media. Hydrophobic molecules such as Nile Red or doxorubicin (Dox) are readily loaded into ICMs; the resulting drug‐ICM formulations possess slow and sustained drug release profiles under physiological‐mimicking conditions. ICMs exhibit negligible cytotoxicity in human uterine sarcoma cancer cells by using biodegradable aliphatic polyester as the hydrophobic segments. Relative to free Dox, Dox‐loaded ICMs show a reduced cytotoxicity due to the late intracellular release of Dox from ICMs. Overall, ICMs represent a new type of biodegradable cross‐linked micelle and can be employed as a promising platform for delivering a broad variety of hydrophobic drugs.

  相似文献   


6.
A block copolymer based on poly(N‐isopropyl acrylamide) (PNIPAAm) and a block with a statistical distribution of poly(2‐hydroxyethyl acrylate) (PHEA) and repeating unit with carrying β‐cyclodextrin was prepared via reversible addition–fragmentation chain transfer (RAFT) polymerization and click reaction. Addition of poly(2‐hydroxyethyl acrylate‐s‐adamantylmethyl acrylate) P(HEA17s‐AdMA7) above the LCST of the block copolymer led to capture of the micelle structure of 36 nm against disassembly. The drug‐ (albendazole) loaded supramolecular assembly, which was fixed via host–guest complexation between β‐cyclodextrin and adamantane, was then tested as a drug carrier. Cell viability studies using human ovarian carcinoma cell line (OVCAR‐3) cell lines show a higher toxicity of the shell cross‐linked micelle compared with the free block copolymer.  相似文献   

7.
Antiepidermal growth factor receptor antibody (anti‐EGFR antibody) was conjugated with the block copolymer micelle based on poly(ethylene glycol) (PEG) and poly(ε‐caprolactone) (PCL) for active targeting to EGFR overexpressing cancer cells. Doxorubicin (DOX) was encapsulated in the core of the block copolymer (MePEG‐b‐PCL) micelle (DOX‐micelle). The mean diameters of the DOX‐micelle and the anti‐EGFR‐PEG‐b‐PCL copolymer micelles loaded with DOX (DOX‐anti‐EGFR‐micelle) were about 25 and 31 nm, respectively. The RKO human colorectal cancer cells expressing moderate degree of EGFR were incubated with free DOX, DOX‐micelle, or DOX‐anti‐EGFR‐micelle to study the distribution of DOX in the cells. When cells were incubated with free DOX, moderate degree of DOX fluorescence was observed in the nuclei. In the cells treated with DOX‐micelle, the DOX fluorescence intensity in the cytoplasm was much greater than that in the nuclei. On the other hand, the nuclei of the cells treated with DOX‐anti‐EGFR‐micelle exhibited DOX fluorescence intensity similar to that in the cytoplasm. The cytotoxicity of DOX‐anti‐EGFR‐micelle to induce apoptosis in RKO cells was significantly greater than that of free DOX or DOX‐micelle. These results demonstrated that the presence of anti‐EGFR antibody on the DOX‐micelle surface (DOX‐anti‐EGFR‐micelle) increased the internalization of the DOX‐micelle and nuclear accumulation of DOX, and enhanced the DOX‐induced cell death. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7321–7331, 2008  相似文献   

8.
Pyridyldisulfide (PDS) functionalized telechelic polymers of oligo(ethyleneglycol) acrylate (PEG‐A) and their amphiphilic triblock copolymers with styrene (St) were synthesized directly by reversible addition‐fragmentation chain transfer (RAFT) polymerization using a new bifunctional RAFT agent, S,S‐bis[α,α′‐dimethyl‐α″‐(2‐pyridyl disulfide) ethyl acetate] trithiocarbonate (BDPET). The homopolymerization of PEG‐A was found to be well controlled using BDPET (PDI < 1.2). The ABA triblock copolymers poly(PEG‐A)‐b‐poly(St)‐b‐poly(PEG‐A) with narrow molecular weight distribution (PDI < 1.25) were synthesized using poly(PEG‐A) as a macro‐RAFT agent. UV‐vis spectroscopic analysis revealed that 85 mol % of poly(PEG‐A) and 78 mol % of poly(PEG‐A)‐b‐poly(St)‐b‐poly(PEG‐A) retained PDS end group functionality. Micelles were observed to form from poly(PEG‐A)‐b‐poly(St)‐b‐poly(PEG‐A). The presence of PDS groups within the micelle corona was evidenced by UV‐vis spectroscopy and fluorescence spectroscopy. The PDS groups within the corona were then used to functionalize the micelles with a thiol group bearing model peptide, reduced glutathione, and a thiol modified fluorophore, rhodamine B, under mild reaction conditions. UV‐vis and fluorescence spectrocopies revealed that approximately 80% PDS groups from the amphiphilic copolymer were tethered within the micelle coronas and accessible to glutathione and fluorophore attachment. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 899–912, 2009  相似文献   

9.
A folic acid targeted mixed micelle system based on co‐assembly of poly(ε‐caprolactone)‐b‐poly(methoxytri(ethylene glycol) methacrylate‐coN‐(2‐methacrylamido)ethyl folatic amide) and poly(ε‐caprolactone)‐b‐poly(diethylene glycol monomethyl ether methacrylate) is developed to encapsulate indocyanine green (ICG) for photothermal therapy and photodynamic therapy. In this study, the use of folic acid is not only for specific cancer cell recognition, but also in virtue of the carboxylic acid on folic acid to regulate the pH‐dependent thermal phase transition of polymeric micelles for controlled drug release. The prepared ICG‐loaded mixed micelles possess several superior properties such as a preferable thermoresponsive behavior, excellent storage stability, and good local hyperthermia and reactive oxygen species generation under near‐infrared (NIR) irradiation. The photototoxicity induced by the ICG‐loaded micelles has efficiently suppressed the growth of HeLa cells (folate receptor positive cells) under NIR irradiation compared to that of HT‐29, which has low folate receptor expression. Hence, this new type of mixed micelles with excellent features could be a promising delivery system for controlled drug release, effective cancer cell targeting, and photoactivated therapy.  相似文献   

10.
In this article, a light and pH dual‐sensitive block copolymer PEG‐b‐poly(MPC‐Azo/DEA) was facilely prepared for the first time by azide‐alkyne click chemistry between amphiphilic block copolymer bearing pendant alkynyl group poly(ethylene glycol)‐poly(5‐methyl‐5‐propargylxycarbonyl‐1,3‐dioxane‐2‐one) (PEG‐b‐poly(MPC)) and two azide‐containing compounds azobenzene derivative (Azo‐N3) and 2‐azido‐1‐ethyl‐diethylamine (DEA‐N3). Light response of the polymeric nanoparticles benefits from the azobenzene segments and pH responsiveness is attributed to DEA moieties. The prepared copolymer could self‐assemble into spherical micelle particles. The morphological changes of these particles in response to dual stimuli were investigated by UV/vis spectroscopy, dynamic light scattering (DLS), and transmission electron microscopy (TEM). Nile Red (NR) was utilized as probe, and fluorescence spectroscopy was served as an evidence for the enhanced release of cargos from polymeric nanoparticles under combined stimulation. Anticancer drug, DOX was loaded into the nanoparticles and the loaded‐DOX could be released from these nanoparticles under dual stimuli. MTT assays further demonstrated that PEG‐b‐poly(MPC) and PEG‐b‐poly(MPC‐Azo/DEA) were of biocompatibility and low toxicity against HepG2 cells as well as SMCC‐7721 cells. More importantly, the prepared DOX‐loaded nanoparticles exhibited good anticancer ability for the two cells. The synthesized light and pH dual‐sensitive biodegradable polymeric nanoparticles were expected to be platforms for precisely controlled release of encapsulated molecules. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1773–1783  相似文献   

11.
Water‐soluble crosslinked hollow nanoparticles were prepared using pH‐responsive anionic polymer micelles as templates. The template micelles were formed from pH‐responsive diblock copolymers (PAMPS‐PAaH) composed of the poly(sodium 2‐(acrylamido)‐2‐methylpropanesulfonate) and poly(6‐(acrylamido)hexanoic acid) blocks in an aqueous acidic solution. The PAMPS and PAaH blocks form a hydrophilic anionic shell and hydrophobic core of the core‐shell polymer micelle, respectively. A cationic diblock copolymer (PEG‐P(APTAC/CEA)) with the poly(ethylene glycol) block and random copolymer block composed of poly((3‐acrylamidopropyl)trimethylammonium chloride) containing a small amount of the 2‐(cinnamoyl)ethylacrylate photo‐crosslinkable unit can be adsorbed to the anionic shell of the template micelle due to electrostatic interaction, which form a core‐shell‐corona three‐layered micelle. The shell of the core‐shell‐corona micelle is formed from a polyion complex with anionic PAMPS and cationic P(APTAC/CEA) chains. The P(APTAC/CEA) chains in the shell of the core‐shell‐corona micelle can be photo‐crosslinked with UV irradiation. The template micelle can be dissociated using NaOH, because the PAaH blocks are ionized. Furthermore, electrostatic interactions between PAMPS and PAPTAC in the shell are screened by adding excess NaCl in water. The template micelles can be completely removed by dialysis against water containing NaOH and NaCl to prepare the crosslinked hollow nanoparticles. Transmission electron microscopy observations confirmed the hollow structure. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

12.
Polymer nanoparticulate drug delivery systems that respond to reactive oxygen species (ROS) and glutathione (GSH) simultaneously at biologically relevant levels hold great promise to improve the therapeutic efficacy to cancer cells with reduced side effects of chemo drugs. Herein, a novel redox dual‐responsive amphiphilic block copolymer (ABP) that consists of a hydrophilic poly (ethylene oxide) block and a hydrophobic block bearing disulfide linked phenylboronic ester group as pendant is synthesized, and the DOX loaded nanoparticles (BSN‐DOX) based on ABPs with varied hydrophobic block length are fabricated for DOX delivery. The self‐immolative leaving reaction of phenylboronic ester triggered by extracellular ROS and the cleavage of disulfide linkages induced by intracellular GSH both lead to rapid DOX release from BSN‐DOX, resulting in an on‐demand DOX release. Moreover, BSN‐DOX show better tumor inhibition and lower side effects in vivo compared with free drug.  相似文献   

13.
Successful clinical application of siRNA to liver-associated diseases reinvigorates the RNAi therapeutics and delivery vectors, especially for anticancer combination therapy. Fine tuning of copolymer-based assembly configuration is highly important for a desirable synergistic cancer cell-killing effect via the codelivery of chemotherapeutic drug and siRNA. Herein, an amphiphilic triblock copolymer methoxyl poly(ethylene glycol)-block-poly(L-lysine)-block-poly(2-(diisopropyl amino)ethyl methacrylate) (abbreviated as mPEG-PLys-PDPA or PLD) consisting of a hydrophilic diblock mPEG-PLys and a hydrophobic block PDPA is synthesized. Three distinct assemblies (i.e., nanosized micelle, nanosized polymersome, and microparticle) are acquired, along with the increase in PDPA block length. Furthermore, the as-obtained polymersome can efficiently codeliver doxorubicin hydrochloride (DOX) as a hydrophilic chemotherapeutic model and siRNA against ADP-ribosylation factor 6 (siArf6) as an siRNA model into cancer cell via lysosomal pH-triggered payload release. PC-3 prostate cell is synergistically killed by the DOX- and siArf6-coloading polymersome (namely PLD@DOX/siArf6). PLD@DOX/siArf6 may serve as a robust nanomedicine for anticancer therapy.  相似文献   

14.
Synthetic nanomotors are appealing delivery vehicles for the dynamic transport of functional cargo. Their translation toward biological applications is limited owing to the use of non‐degradable components. Furthermore, size has been an impediment owing to the importance of achieving nanoscale (ca. 100 nm) dimensions, as opposed to microscale examples that are prevalent. Herein, we present a hybrid nanomotor that can be activated by near‐infrared (NIR)‐irradiation for the triggered delivery of internal cargo and facilitated transport of external agents to the cell. Utilizing biodegradable poly(ethylene glycol)‐b‐poly(d,l ‐lactide) (PEG‐PDLLA) block copolymers, with the two blocks connected via a pH sensitive imine bond, we generate nanoscopic polymersomes that are then modified with a hemispherical gold nanocoat. This Janus morphology allows such hybrid polymersomes to undergoing photothermal motility in response to thermal gradients generated by plasmonic absorbance of NIR irradiation, with velocities ranging up to 6.2±1.10 μm s?1. These polymersome nanomotors (PNMs) are capable of traversing cellular membranes allowing intracellular delivery of molecular and macromolecular cargo.  相似文献   

15.
Amphiphilic diblock copolymers with various block compositions were synthesized on poly(2‐ethyl‐2‐oxazoline) (PEtOz) as a hydrophilic block and poly(4‐methyl‐ε‐caprolactone) (PMCL) or poly(4‐phenyl‐ε‐caprolactone) (PBCL) as a hydrophobic block. These PEtOz‐b‐PMCL and PEtOz‐b‐PBCL copolymers consisting of soft domains of amorphous PEtOz and PM(B)CL had no melting endothermal peaks but displayed Tg. The lower critical solution temperature (LCST) values for the PEtOz‐b‐PMCL, and the PEtOz‐b‐PBCL aqueous solution were observed to shift to lower temperature than PEtOz homopolymers. Their aqueous solutions were characterized using fluorescence techniques and dynamic light scattering (DLS). The block copolymers formed micelles with critical micelle concentrations (CMCs) in the range 0.6–11.1 mg L?1 in an aqueous phase. As the length of the hydrophobic PMCL or PBCL blocks elongated, lower CMC values were generated. The mean diameters of the micelles were between 127 and 318 nm, with PDI in the range of 0.06–0.21, suggesting nearly monodisperse size distributions. The drug entrapment efficiency and drug‐loading content of micelles depend on block polymer compositions. In vitro cell viability assay showed that PEtOz‐b‐PMCL has low cytotoxicity. Doxorubicin hydrochloride (DOX)‐loaded micelles facilitated human cervical cancer (HeLa) cell uptake of DOX; uptake was completed within 2 h, and DOX was able to reach intracellular compartments and enter the nuclei by endocytosis. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2769–2781  相似文献   

16.
The drug delivery performances of pH‐responsive magnetic hydrogels (MHs) composed of tragacanth gum (TG), poly(acrylic acid) (PAA), and Fe3O4 nanoparticles (NPs) were investigated in terms of physicochemical as well as biological features. The fabricated drug delivery systems (DDSs) were analyzed using Fourier transform infrared spectroscopy, X‐ray diffraction, vibrating sample magnetometer, scanning electron microscopy, and transmission electron microscopy. The synthesized MHs were loaded with doxorubicin hydrochloride (Dox) as a universal model anti‐cancer drug. The MHs showed excellent Dox loading and encapsulation efficiencies, mainly due to strong hydrogen bonding and electrostatic interaction between the drug and polymeric matrix, as well as porous micro‐structures of the fabricated MHs. The drug‐loaded MHs showed negligible drug release values in physiological condition. In contrast, in cancerous condition (pH 5.0), both MHs exhibited highest drug release values that qualified them as “smart” DDSs. The cytocompatibilities of the MHs as well as the cytotoxicity of the Dox‐loaded MHs were investigated against human epidermoid‐like carcinoma (Hela) cells through MTT assay. In addition, hyperthermia therapy induced by Fe3O4 NPs was applied to locally raise temperature inside the Hela cells at 45 ± 3°C to promote cell death. As a result, the Dox‐loaded MHs can be considered as potential DDSs for chemo/hyperthermia therapy of solid tumors.  相似文献   

17.
The intracellular delivery of Doxorubicin (Dox) from poly(lactide‐co‐glycolide) (PLGA) nanoparticles stabilised with bovine serum albumin, in HepG2 cells, is studied via flow cytometry, fluorescence lifetime imaging microscopy (FLIM), confocal Raman microscopy (CRM) and cell viability studies. Flow cytometry shows that the initial uptake of PLGA and Dox follow the same kinetics. However, following 8 h of incubation, the fluorescence intensity and cellular uptake of Dox decreases, while in the case of PLGA both parameters remain constant. FLIM shows the presence of a single‐lifetime species, with a lifetime of 1.15 ns when measured inside the cells. Cell viability decreases by approximately 20% when incubated for 24 h with PLGA loaded with Dox, with a particle concentration of 100 µg · mL?1. At the single‐cell level, CRM shows changes in the bands from DNA and proteins in the cell nucleus when incubated with PLGA loaded with Dox.

  相似文献   


18.
This article reports a synthetic methodology for single step preparation of telechelic poly(disulfide)s (PDS) by step‐growth polymerization between a di‐thiol and a commercially available monomer 2,2′‐dithiodipyridine in presence of a functional group appended pyridyl disulfide moiety as the “mono‐functional impurity” (MFI). Redox‐destructible well‐defined segmented PDSs with functional chain terminal, predicted and tunable degree of polymerization and narrow polydispersity index (<2.0) could be synthesized under a mild reaction condition. Using an appropriate MFI, PDS could be synthesized with trithiocarbonate chain terminals in a single step, which could be further used as macro chain‐transfer agent (CTA) for chain growth polymerization under RAFT mechanism producing ABA type tri‐block copolymer wherein the B block consists of the degradable PDS chain. By copolymerization between a hydrophobic di‐thiol monomer and a hydroxyl group appended di‐thiol monomer, PDS could be prepared with pendant hydroxyl functional group which was utilized to initiate ring opening polymerization of cyclic lactide monomers producing well‐defined degradable graft‐copolymer. The pendant hydroxyl groups were further utilized to anchor a polar carboxylic group to the degradable PDS backbone which under basic condition showed aqueous self‐assembly generating micelle‐like structure with hydrophobic guest encapsulation ability and glutathione responsive sustained release. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 194–202  相似文献   

19.
Choline phosphate(CP) as a novel zwitterion possesses specific and excellent properties compared with phosphorylcholine(PC), as well as its polymer, such as poly(2-(methacryloyloxy)ethyl choline phosphate)(PMCP), has been studied extensively due to its unique characteristics of rapid cellular internalization via the special quadrupole interactions with the cell membrane. Recently, we reported a novel PMCP-based drug delivery system to enhance the cellular internalization where the drug was conjugated to the polymer via reversible acylhydrazone bond. Herein, to make full use of this feature of PMCP, we synthesized the diblock copolymer poly(2-(methacryloyloxy)ethyl choline phosphate)-b-poly(2-(diisopropylamino)ethyl methacrylate)(PMCP-b-PDPA), which could self-assemble into polymersomes with hydrophilic PMCP corona and hydrophobic membrane wall in mild conditions when the p H value is ≥ 6.4. It has been found that these polymersomes can be successfully used to load anticancer drug Dox with the loading content of about 11.30 wt%. After the polymersome is rapidly internalized by the cell with the aid of PMCP, the loaded drug can be burst-released in endosomes since PDPA segment is protonated at low p H environment, which renders PDPA to transfer from hydrophobic to hydrophilic,and the subsequent polymersomes collapse thoroughly. Ultimately, the "proton sponge" effect of PDPA chain can further accelerate the Dox to escape from endosome to cytoplasm to exert cytostatic effects. Meanwhile, the cell viability assays showed that the Dox-loaded polymersomes exhibited significant inhibitory effect on tumor cells, indicating its great potential as a targeted intracellular delivery system with high efficiency.  相似文献   

20.
Flower‐like nanostructured hydroxyapatite hollow spheres (NHHS) assembled with nanosheets with a hierarchical morphology are fabricated by a rapid microwave‐assisted hydrothermal route. The presence and concentration of block copolymer poly(lactide)‐block‐poly(ethylene glycol) (PLA–PEG) are important parameters for the formation of the hollow structure. The possible formation mechanism of NHHS is proposed. The NHHS are explored as anticancer drug carriers for cellular delivery of mitoxantrone (MIT). The MIT‐loaded NHHS exhibit sustained‐drug‐release behavior in vitro and the intracellular drug‐distribution tests indicate that the MIT loaded in NHHS carriers can enter the cells efficiently. The experiments also show that the NHHS have a good biocompatibility, and therefore, they are promising anticancer drug carriers in cancer chemotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号