首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Investigations on the molecular weight distribution of cyrstalline polypropylene were carried out by column fractionation and gel-permeation chromatography for the purpose of comparing the determination methods. Average molecular weight, standard deviation, skewness, and kurtosis were calculated as statistical parameters from the distribution curve of each, and the number-average and weight-average molecular weights were determined by osmometry and light scattering. The molecular weight distribution curves obtained from column fractionation were found to be narrower than those from gel-permeation chromatography, and it was confirmed that the molecular weight distribution curve obtained from GPC was more accurate and reliable than that from column fractionation by the fact that the average molecular weight from GPC agreed fairly well with that from the absolute methods. On the other hand, no clear difference between these determination methods was observed with respect to skewness and kurtosis of the data, while the standard deviation from GPC seemed to be greater than that from column fractionation.  相似文献   

2.
Novel molecular recognition materials were prepared from water soluble proteins from thermophile G. thermodenitrificans DSM465 by an alternative molecular imprinting method. Water soluble proteins from G. thermodenitrificans DSM465 were converted into the molecularly imprinted materials by adopting 9-EA as a print molecule. The molecularly imprinted protein membranes recognized As in preference to Gs. The adsorption isotherms led to the conclusion that molecular recognition sites toward As were constructed by the presence of 9-EA during the membrane preparation process. The affinity constant between As and the molecular recognition site thus constructed was determined to be 1.75 x 10(5) mol(-1) dm(3). The results obtained in the present study suggest that water soluble proteins from G. thermodenitrificans DSM465 is one of environmentally-friendly 'green' polymers to be converted into molecular recognition materials by applying an alternative molecular imprinting method.  相似文献   

3.
A method for implementing a secret sharing scheme at the molecular level is presented. By creating molecular code generators that are self‐assembled from several molecular components, we established a means for distributing distinct code‐activating elements among several participants. In this way, an authorization code can only be generated when all the participants are present, which ensures that highly secured systems cannot be operated by unauthorized individuals or disloyal users. Additional layers of protection result from the ability to program the security code by replacing one or several molecular components and by subjecting the system to distinct chemical inputs.  相似文献   

4.
Atomic multipoles as defined by current methods generally do not account for forces in molecules that arise from external electrostatic fields. It is pointed out that such forces and the electrostatic potential that the molecule itself generates are both determined by the molecular multipolar tensors. The latter constitute therefore the fundamental molecular constants that determine the molecular electrostatics apart from polarization. In general the multipolar tensors include contributions from the atomic multipoles and their fluxes. In planar molecules, however, the perpendicular charge flux is zero by symmetry. This gives rise to a (previously introduced) formalism that extracts analytical, force-related, atomic multipoles from the molecular multipolar tensors. This formalism is extended in this work to include force-related (FR) atomic quadrupoles and octupoles in planar molecules. The properties of the FR atomic multipoles, including their perpendicular fluxes, are discussed and some formal theoretical and computational advantages that characterize them are indicated. As an example, the electrostatics of OCS, including the molecular electrostatic potential and the forces on the nuclei due to an external point charge, is discussed.  相似文献   

5.
Movement is intrinsic to life. Biologists have established that most forms of directed nanoscopic, microscopic and, ultimately, macroscopic movements are powered by molecular motors from the dynein, myosin and kinesin superfamilies. These motor proteins literally walk, step by step, along polymeric filaments, carrying out essential tasks such as organelle transport. In the last few years biological molecular walkers have inspired the development of artificial systems that mimic aspects of their dynamics. Several DNA-based molecular walkers have been synthesised and shown to walk directionally along a track upon sequential addition of appropriate chemical fuels. In other studies, autonomous operation--i.e. DNA-walker migration that continues as long as a complex DNA fuel is present--has been demonstrated and sophisticated tasks performed, such as moving gold nanoparticles from place-to-place and assistance in sequential chemical synthesis. Small-molecule systems, an order of magnitude smaller in each dimension and 1000× smaller in molecular weight than biological motor proteins or the walker systems constructed from DNA, have also been designed and operated such that molecular fragments can be progressively transported directionally along short molecular tracks. The small-molecule systems can be powered by light or chemical fuels. In this critical review the biological motor proteins from the kinesin, myosin and dynein families are analysed as systems from which the designers of synthetic systems can learn, ratchet concepts for transporting Brownian substrates are discussed as the mechanisms by which molecular motors need to operate, and the progress made with synthetic DNA and small-molecule walker systems reviewed (142 references).  相似文献   

6.
The molecular structures of methacryl‐grafted polysiloxane resins from 3‐(trimethoxysilyl)propyl methacrylate (MPTS) and diphenylsilanediol (DPSD) were determined by theoretical computation and experimental measurement. The molecular structures obtained from theoretical computation coincided well with those from experimental measurement, and we found that the structural changes in the resins could be controlled by precursor compositions. While molecular weights and polysiloxane chain lengths of the resins increase with DPSD contents, their molecular sizes do not vary significantly. In the present study, molecular sizes and shapes of the resins with various compositions are hypothesized theoretically and proven experimentally. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 827–836, 2005  相似文献   

7.
傅强 《高分子科学》2014,32(7):953-960
Poly(butylene succinate) (PBS) with different molecular weight was synthesized from 1, 4-butanediol and succinic acid by direct melt condensation. The synthesized PBS was identified by IH-NMR and FTIR spectrometry. The molecular weight was calculated from the intrinsic viscosity, and its value was between 20000 and 70000. The crystallization behavior and crystal morphology as function of molecular weight were investigated by DSC and PLM, respectively. The mechanical properties and hydrolytic degradation behaviors related with change of molecular weight were also studied in this work. The results demonstrated that the properties of PBS were determined by both molecular weight and crystallization properties (crystallinity as well as crystal morphology). Our work is important for the design and preparation of PBS with proper molecular weight for its practical application.  相似文献   

8.
The elaboration of solids from the molecular scale by a kinetically controlled methodology is one of the main challenges of molecular chemistry. In the long term, this should permit the design of solids with desired properties. Here, some examples are given which show a few methods that have been used for the preparation of solids from molecular precursors. The one-pot synthesis of rheologically controlled SiC is described. Access to a new kind of ceramic is obtained by the same methodology using molecular precursors. Mixed ceramics with interpenetrating networks are not accessible by the chemical thermodynamic route. The chemistry of hybrid materials obtained from molecular precursors through inorganic polymerization is presented. This class of materials offers wide perspectives because of 1) the large possibilities opened by the organic unit, 2) the kinetic control, which permits any kind of texture for the solid, and 3) the aptitude of these solids to become nanostructured.  相似文献   

9.
The quest for mastering the controlled engineering of dynamic molecular assemblies is the basis of molecular architectonics. The rational use of noncovalent interactions to programme the molecular assemblies allow the construction of diverse molecular and material architectures with novel functional properties and applications. Understanding and controlling the assembly of molecular systems are daunting tasks owing to the complex factors that govern at the molecular level. Molecular architectures depend on the design of functional molecular modules through the judicious selection of functional core and auxiliary units to guide the precise molecular assembly and co-assembly patterns. Biomolecules with built-in information for molecular recognition are the ultimate examples of evolutionary guided molecular recognition systems that define the structure and functions of living organisms. Explicit use of biomolecules as auxiliary units to command the molecular assemblies of functional molecules is an intriguing exercise in the scheme of molecular architectonics. In this minireview, we discuss the implementation of the principles of molecular architectonics for the development of novel biomaterials with functional properties and applications ranging from sensing, drug delivery to neurogeneration and tissue engineering. We present the molecular designs pioneered by our group owing to the requirement and scope of the article while acknowledging the designs pursued by several research groups that befit the concept.  相似文献   

10.
Methods for palladium-catalyzed aerobic oxidation of alcohols often benefit from the presence of molecular sieves. This report explores the effect of molecular sieves on the Pd(OAc)2/pyridine and Pd(OAc)2/DMSO (DMSO = dimethyl sulfoxide) catalyst systems by performing kinetic studies of alcohol oxidation in the presence and absence of molecular sieves. Molecular sieves enhance the rate of the Pd(OAc)2/pyridine-catalyzed oxidation of alcohols, and the effect is attributed to the ability of molecular sieves to serve as a Br?nsted base. In contrast, no rate enhancement is observed for the Pd(OAc)2/DMSO-catalyzed reaction. Both catalyst systems exhibit improved catalyst stability in the presence of molecular sieves, manifested by higher catalytic turnover numbers. Control experiments indicate that neither of these beneficial effects is associated with the ability of molecular sieves to absorb water, a stoichiometric byproduct of these reactions. Finally, the use of simultaneous gas-uptake and in-situ IR spectroscopic studies reveal that molecular sieves inhibit the disproportionation of H2O2, an observation that contradicts a previous suggestion that the beneficial effect of molecular sieves may arise from their ability to promote H2O2 disproportionation.  相似文献   

11.
The structure of the surface layers of thin films cast from water-soluble derivatives of cellulose—methyl cellulose and hydroxypropyl methylcellulose—has been studied by the methods of an oblique polarized beam and molecular hydrodynamics. It has been demonstrated that the molecular chains of the polymers under study are characterized by a high degree of order in surface film layers. The orientational order of molecular chains demonstrates a strong molecular mass dependence. This effect is associated with the concentration of terminal segments whose orientational order parameter relative to the film surface differs from the corresponding value of internal segments composing the molecular chain. The quantitative estimates of the orientational order parameter of terminal and internal segments have been performed.  相似文献   

12.
采用Monte Carlo模拟方法研究了溶剂尺寸对ABA两亲性三嵌段共聚物在选择性溶剂中自组装行为的影响。模拟结果表明,溶剂尺寸是决定共聚物聚集形态的重要因素之一。随着溶剂尺寸的增大,嵌段共聚物自组装所形成的胶束可以发生从球状到棒状再到囊泡状的转变。通过对各组分的相互作用对数随溶剂尺寸变化曲线的分析发现,增大溶剂尺寸会使溶剂的溶解性变差,由此引发体系中的一系列形态转变。此外,通过对体系自组装形貌结构相图的分析发现,增大溶剂尺寸或增加疏水作用同减小亲水作用对于自组装形态的改变具有同等效果。  相似文献   

13.
The effect of polymerization conditions on the molecular weight of polystyrene grafted onto silica obtained from the radical graft polymerization initiated by azo and peroxyester groups introduced onto the surface was investigated. The molecular weight of polystyrene grafted onto silica obtained from the radical graft polymerization initiated by surface azo and peroxyester groups decreased with decreasing monomer concentration and polymerization temperature. The molecular weight of polystyrene was found to be controlled to some extent by the addition of a chain transfer agent. The molecular weight of grafted chain on silica surface obtained from the graft polymerization initiated by surface radicals formed by photodecomposition of azo groups was considerably smaller than that by thermal decomposition. The number of grafted polystyrene in photopolymeriztion, however, was much larger than that in thermal polymerization. These results are explained by the blocking of surface radicals formed on the silica surface by previously grafted polymer chain: when the decomposition of surface azo and peroxyester groups proceed instantaneously at the initial stage of the polymerization, the number of grafted polymer chains increased.  相似文献   

14.
黄仲立  马林  刘伟  程玉华 《色谱》1999,17(2):196-199
DFP酸可催化水解二异丙基氟磷酸酯(DFP)分子中的P-F键,使其断裂产生磷酸二异丙基酯和HF。根据电位滴定法和离子选择电极法对猪肝中发现的两种DFP水解酶活力测定的结果,利用毛细管等速电泳分析仪对这两种酶催化DFP水解的产物进行了定性分析。结果表明,猪肝中小分子质量的酸催化DFP水解反应时,并非水解P-F键.而是水解P-OR键,说明该酶是一种催化DFP分子中磷酯健水解的磷酯酶。  相似文献   

15.
张树彪  乔卫红  李宗石 《色谱》2000,18(3):277-279
 利用凝胶渗透色谱法测定了木质素分散剂的相对分子质量分布。结果表明,Reax-85A相对分子质量分布为500~35000,M-9为1000~50000。Reax-85和M-9各薄层分离组分的相对分子质量分布的测定结果说明,组分Rf值越大,流出体积越大,相对分子质量越小。NaOH溶液的浓度对洗脱图形有很大影响,当其浓度为0.5mol/L时图形趋于稳定。  相似文献   

16.
In this paper, possible sources for the unexpected distributions of crystalline sequence lengths calculated from temperature rising elution fractionation (TREF) calibration experiments, as reported in a previous work, are investigated. With this aim, chain folding and cocrystalization phenomena were explored in the conditions of crystallization as used for TREF or crystallization analysis fractionation (CRYSTAF). Slow crystallizations were performed from xylene solutions of model low molecular weight ethylene homopolymers with narrow molecular weight distributions. The same experiments were performed with homopolymers having narrow molecular weight distributions and with blends having wide molecular weight distributions. The resulting distributions of the lengths of crystalline methylene sequences were directly studied by Raman in the so‐called longitudinal acoustic mode (LAM) and by DSC. For ethylene homopolymers with molecular weights below 2000 g/mol, the results from Raman LAM indicate that slow crystallization in TREF or CRYSTAF systems occurs in the extended‐chain mode. For higher molecular weights, evidence of chain folding was found. In the case of blends, independent crystallization was observed for each molecular weight when the molecular weight ranges used for the blends are relatively narrow. Cocrystallization was observed when this range was increased. Overall, these results strongly support the inverse technique calculation procedure developed by our group for the calculation of distributions of lengths of crystallizable sequences from TREF spectra. In this context, the results confirm that the unexpected crystallizable sequence lengths found in our previous work really exist and can be associated to chain folding or cocrystallization phenomena. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3083–3092, 2005  相似文献   

17.
A kinetic study of Aldrich humic acid sorption onto a quartz sand surface has revealed an initial rapid uptake of humic acid molecules followed by a much slower sorption. The humic acid molecular weight and chemical fractionation resulting from adsorption onto the simple quartz sand surface were investigated for the two kinetic steps by coupled asymmetric flow-field flow fractionation-UV/visible absorption spectrophotometry. The molecular weight distribution of residual humic acid in solution after adsorption deviated from the original molecular weight distribution, showing preferential adsorption of certain molecular weight components. This fractionation is different after the two kinetic steps. Humic acid molecules characterised by a molecular weight below 4800 Da and with a weight-average molecular weight (M(w)) of 1450 Da were adsorbed after the fast kinetic step, whereas humic acid molecules in the molecular weight range 1400-9200 Da and of M(w) 3700 Da were adsorbed after the slower uptake. Therefore, the adsorption of low molecular weight humic components takes place initially, and is then followed by the adsorption of higher molecular weight components. Chemical adsorptive fractionation, investigated by studying the 253 nm/203 nm absorbance ratio over time, shows that aromatic components are preferentially adsorbed during the fast kinetic step. The fractionation pattern may be explained by the physicochemical characteristics of the Aldrich humic acid and the underlying sorption processes. The trend for the sorption kinetics of europium onto the quartz sand surface in the presence of humic acid is similar to that of the humic acid itself.  相似文献   

18.
A micro‐FTIR measurement has been conducted to explore the molecular orientation of amorphous phase in the nylon 6/clay nanocomposite at large strain. Our results indicate that the molecular orientation in such a nanocomposite during stretching is lower than that observed for the pure nylon 6 counterpart, which is further evidenced by the true stress‐strain dependence. The relaxation of the molecular network, resulted from the destruction of γ‐crystals in part and mostly from microvoding (demonstrated by volume dilatation and 2D‐SAXS measurements), should be responsible for the suppressed molecular orientation in the nylon 6/clay nanocomposite. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 514–519, 2010  相似文献   

19.
Abstract— The average molecular weights of haematoporphyrin derivative (HPD), the fractions of HPD that can he obtained by gel chromatography and of purified haematoporphyrin and protoporphyrin in aqueous solution have been determined by ultracentrifugation. The results show that HPD contains polymeric material with the excluded fraction from the gel column (HPD aggregate) having an average molecular weight of greater than 20000. The two remaining gel column fractions of HPD have lower molecular weights and their similarity indicates that these fractions do not separate because of molecular weight differences. Purified haematoporphyrin has a comparatively low molecular weight in aqueous solution but the data is not capable of discriminating between monomer, dimer or slightly higher oligomer. In contrast, protoporphyrin sediments to the bottom of the centrifuge tube under the conditions of sedimentation equilibrium indicating that it has an average molecular weight considerably greater than that of HPD aggregate.  相似文献   

20.
新型中微孔复合分子筛的研究   总被引:5,自引:1,他引:5  
报道一种中微孔复合分子筛Y/MCM-41的研究,通过XRD,SEM,IR,BET,水热 老化等手段对复合材料进行了表征。研究结果表明,复合分子筛与机械混合物存在 明显差别,复合分子筛中孔结构的水热稳定性优于普通合成的纯中孔分子筛。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号