首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
With recent advances in electronic structure methods, first-principles calculations of electronic response properties, such as linear and nonlinear polarizabilities, have become possible for molecules with more than 100 atoms. Basis set incompleteness is typically the main source of error in such calculations since traditional diffuse augmented basis sets are too costly to use or suffer from near linear dependence. To address this problem, we construct the first comprehensive set of property-optimized augmented basis sets for elements H-Rn except lanthanides. The new basis sets build on the Karlsruhe segmented contracted basis sets of split-valence to quadruple-zeta valence quality and add a small number of moderately diffuse basis functions. The exponents are determined variationally by maximization of atomic Hartree-Fock polarizabilities using analytical derivative methods. The performance of the resulting basis sets is assessed using a set of 313 molecular static Hartree-Fock polarizabilities. The mean absolute basis set errors are 3.6%, 1.1%, and 0.3% for property-optimized basis sets of split-valence, triple-zeta, and quadruple-zeta valence quality, respectively. Density functional and second-order M?ller-Plesset polarizabilities show similar basis set convergence. We demonstrate the efficiency of our basis sets by computing static polarizabilities of icosahedral fullerenes up to C(720) using hybrid density functional theory.  相似文献   

2.
We present benchmark calculations of vertical electron detachment energies (VDEs) for various conformers of (H2O)n-, using both wave function and density functional methods, in sequences of increasingly diffuse Gaussian basis sets. For small clusters (n < or = 6), a systematic examination of VDE convergence reveals that it is possible to converge this quantity to within approximately 0.01 eV of the complete-basis limit, using a highly diffuse but otherwise economical Pople-style basis set of double-zeta quality, with 28 atom-centered basis functions per water molecule. Floating-center basis functions can be useful but are not required to obtain accurate VDEs. Second-order M?ller-Plesset perturbation (MP2) theory suffices to obtain VDEs that are within 0.05 eV of the results from both experiment and coupled-cluster theory, and which always err toward underbinding the extra electron. In contrast to these consistent predictions, VDEs calculated using density functional theory (DFT) vary widely, according to the fraction of Hartree-Fock exchange in a given functional. Common functionals such as BLYP and B3LYP overestimate the VDE by 0.2-0.5 eV, whereas a variant of Becke's "half and half" functional is much closer to coupled-cluster predictions. Exploratory calculations for (H2O)20- and (H2O)24- cast considerable doubt on earlier calculations that were used to assign the photoelectron spectra of these species to particular cluster isomers.  相似文献   

3.
Ab initio calculations on fluoroethane reactions with the hydroxyl radical have been carried out at different levels of theory. The convergence of reaction barriers and reaction enthalpies has been systematically investigated with respect to the size and quality of the basis set and the treatment of correlation energy. The G2 and MP2 barrier heights and reaction enthalpies show the best agreement with the experimental data. The split valence basis sets of triple-zeta quality supplemented by diffuse and polarization functions are necessary to reproduce experimental values for barrier heights and reaction enthalpies at the MP2 level of theory. The full counterpoise correction was used to calculate the basis set superposition error for several standard basis sets, including polarization and diffuse functions. The smallest counterpoise corrections are associated with basis sets that contain polarization and diffuse functions, the diffuse functions being the most effective in reducing BSSE. However, in our case, the uncorrected barrier heights are in better agreement with experimental results than the counterpoise-corrected data. Thus, at the MP2 level of theory, which seems to be dictated for larger electronic systems of chemical interest, the optimal approach is to increase the basis set to the maximum size affordable and to use results without counterpoise corrections for the calculation of reaction barriers. A viable alternative is the use of G2 theory because its results for the barrier heights and reaction enthalpies are in excellent agreement with the experimental data. © 1997 John Wiley & Sons, Inc. J Comput Chem 18: 1190–1199  相似文献   

4.
Consistent basis sets of triple‐zeta valence with polarization quality for main group elements and transition metals from row one to three have been derived for periodic quantum‐chemical solid‐state calculations with the crystalline‐orbital program CRYSTAL. They are based on the def2‐TZVP basis sets developed for molecules by the Ahlrichs group. Orbital exponents and contraction coefficients have been modified and reoptimized, to provide robust and stable self‐consistant field (SCF) convergence for a wide range of different compounds. We compare results on crystal structures, cohesive energies, and solid‐state reaction enthalpies with the modified basis sets, denoted as pob‐TZVP, with selected standard basis sets available from the CRYSTAL basis set database. The average deviation of calculated lattice parameters obtained with a selected density functional, the hybrid method PW1PW, from experimental reference is smaller with pob‐TZVP than with standard basis sets, in particular for metallic systems. The effects of basis set expansion by diffuse and polarization functions were investigated for selected systems. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
We present a library of Gaussian basis sets that has been specifically optimized to perform accurate molecular calculations based on density functional theory. It targets a wide range of chemical environments, including the gas phase, interfaces, and the condensed phase. These generally contracted basis sets, which include diffuse primitives, are obtained minimizing a linear combination of the total energy and the condition number of the overlap matrix for a set of molecules with respect to the exponents and contraction coefficients of the full basis. Typically, for a given accuracy in the total energy, significantly fewer basis functions are needed in this scheme than in the usual split valence scheme, leading to a speedup for systems where the computational cost is dominated by diagonalization. More importantly, binding energies of hydrogen bonded complexes are of similar quality as the ones obtained with augmented basis sets, i.e., have a small (down to 0.2 kcal/mol) basis set superposition error, and the monomers have dipoles within 0.1 D of the basis set limit. However, contrary to typical augmented basis sets, there are no near linear dependencies in the basis, so that the overlap matrix is always well conditioned, also, in the condensed phase. The basis can therefore be used in first principles molecular dynamics simulations and is well suited for linear scaling calculations.  相似文献   

6.
Numerical atom‐centered basis sets (orbitals) (NAO) are known for their compactness and rapid convergence in the Hartree–Fock and density‐functional theory (DFT) molecular electronic‐structure calculations. To date, not much is known about the performance of the numerical sets against the well‐studied Gaussian‐type bases in correlated calculations. In this study, one instance of NAO [Blum et al., The Fritz Haber Institute ab initio Molecular Simulations Package (FHI‐aims), 2009] was thoroughly examined in comparison to the correlation‐consistent basis sets in the ground‐state correlated calculations on the hydrogen‐bonded water and dispersion‐dominated methane dimers. It was shown that these NAO demonstrate improved, comparing to the unaugmented correlation‐consistent based, convergence of interaction energies in correlated calculations. However, the present version of NAO constructed in the DFT calculations on covalently‐bound diatomics exhibits enormous basis‐set superposition error (BSSE)—even with the largest bases. Moreover, these basis sets are essentially unable to capture diffuse character of the wave function, necessary for example, for the complete convergence of correlated interaction energies of the weakly‐bound complexes. The problem is usually treated by addition of the external Gaussian diffuse functions to the NAO part, what indeed allows to obtain accurate results. However, the operation increases BSSE with the resulting hybrid basis sets even further and breaks down the initial concept of NAO (i.e., improved compactness) due to the significant increase in their size. These findings clearly point at the need in the alternative strategies for the construction of sufficiently‐delocalized and BSSE‐balanced purely‐numerical bases adapted for correlated calculations, possible ones were outlined here. For comparison with the considered NAOs, a complementary study on the convergence properties of the correlation‐consistent basis sets, with a special emphasis on BSSE, was also performed. Some of its conclusions may represent independent interest. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
The structure and properties of ZnO quantum dots is a very popular and rapidly growing field of research for which accurate quantum calculations are challenging to perform. Since the dependence between system size and wall time scales nonlinearly, certain compromises have to be made. A particularly important limiting factor is the size of the basis used, this is especially the case if accurate large calculations are to be carried out. In our work, we discovered that an important O(2p)->Zn(4p) back donation, which greatly influences the strength of the Zn O bond, can be reproduced only if diffuse functions are added to the basis set. We further tested the basis dependence for the magic-sized wurtzite nanophase ZnO clusters which were previously shown to be able to accurately reproduce the magnetically doped II-IV Q-dots. In this work, we outline the minimal basis sets required to properly describe Zn O bonds in a nanocluster. It was demonstrated that the rock salt nanophase is incorrectly stabilized if a basis set does not contain sufficiently diffuse functions while the correct wurtzite phase is stabilized when diffuse functions are added. This tendency, similar to that in the ZnO dimer case, was shown to stem from the incorrect lack of Zn(4p) electron density in calculations when using the diffuse-free basis set.  相似文献   

8.
Calculations of molecular polarizabilities require basis sets capable of accurately describing the responses of the electrons to an external perturbation. Unfortunately, basis sets that yield suitable quantitative results have traditionally been all-electron sets with large numbers of primitives, making their use computationally intractable even for moderately sized systems. We present a systematic augmentation of the effective core potential basis set of Stevens et al. [J Chem Phys 81, 12 (1984), Can J Chem 70, 612 (1992)] for 39 main group elements based on the procedure used to construct diffuse and polarization functions in the well-known Sadlej basis sets [Collec Czech Chem Comm 53, 1995 (1988)]. Representative calculations have been performed and we have shown that results to within 1% of all-electron calculations using the Sadlej basis set can be obtained for <1-35% of the computational cost using this new basis set.  相似文献   

9.
10.
11.
12.
The performance of four commonly used density functionals (VWN, BLYP, BP91, and Becke's original three-parameter approximation to the adiabatic connection formula, referred to herein as the adiabatic connection method or ACM) was studied with a series of six Gaussian-type atomic basis sets [DZP, 6–31G**, DZVP, TZVP, TZ2P, and uncontracted aug-cc-pVTZ (UCC)]. The geometries and dipole moments of over 100 first-row and second-row molecules and reaction energies of over 300 chemical reactions involving such molecules were computed using each of the four density functionals in combination with each of the six basis sets. The results were compared to experimentally determined values. Based on overall mean absolute theory versus experiment errors, it was found that ACM is the best choice for predictions of both energies of reaction [overall mean absolute theory versus experiment error (MATvEE) of 4.7 kcal/mol with our most complete (UCC) basis set] and molecular geometries (overall MATvEE of 0.92 pm for bond distances and 0.88° for bond angles with the UCC basis set). For routine calculations with moderate basis sets (those of double-ζ type: DZP, 6–31G**, and DZVP) the DZVP basis set was, on average, the best choice. There were, however, examples of reactions where significantly larger basis sets were required to achieve reasonable accuracy (errors ≤ 5 kcal/mol). For dipole moments, ACM, BP91, and BLYP performed comparably (overall MATvEE of 0.071, 0.067, and 0.059 debye, respectively, with the UCC basis set). Basis sets that include additional polarization functions and diffuse functions were found to be important for accurate density functional theory predictions of dipole moments. © 1997 by John Wiley & Sons, Inc.  相似文献   

13.
ERKALE is a novel software program for computing X‐ray properties, such as ground‐state electron momentum densities, Compton profiles, and core and valence electron excitation spectra of atoms and molecules. The program operates at Hartree–Fock or density‐functional level of theory and supports Gaussian basis sets of arbitrary angular momentum and a wide variety of exchange‐correlation functionals. ERKALE includes modern convergence accelerators such as Broyden and ADIIS and it is suitable for general use, as calculations with thousands of basis functions can routinely be performed on desktop computers. Furthermore, ERKALE is written in an object oriented manner, making the code easy to understand and to extend to new properties while being ideal also for teaching purposes. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
The accuracy of the Perdew-Burke-Ernzerhof and Tao-Perdew-Staroverov-Scuseria density functionals for describing noncovalent interaction energies in small water clusters is studied by testing 11 basis sets on a reduced test set proposed by Dahlke and Truhlar (J. Phys. Chem. B 2005, 109, 15677). We have also tested variants of the Perdew-Burke-Ernzerhof functional and the Becke98 hybrid functional. While moderate basis sets give converged density functional theory results for covalent dissociation energies, this is not true for noncovalent interaction energies. Our results show that density functionals give converged interaction energies with aug-cc-pVTZ and aug-cc-pVQZ basis sets. Gradual simplification of the basis set introduces an increasing overbinding effect. The best agreement with the high-level result was obtained by the Perdew-Burke-Ernzerhof functional at the basis set limit. The converged Tao-Perdew-Staroverov-Scuseria interaction energies show a systematic underbinding effect that can be compensated by a somewhat systematic overbinding basis set effect of smaller basis sets such as 6-31+G(d,2p). The inclusion of the diffuse functions in the oxygen basis set is very important, while the inclusion of the f functions practically does not influence the results. Improvement can be obtained by adding more hydrogen p functions to the 6-31+G basis set.  相似文献   

15.
We have calculated the intermolecular interaction potentials of the methane dimer at the minimum-energy D(3d) conformation using the Hartree-Fock (HF) self-consistent theory, the correlation-corrected second-order M?ller-Plesset (MP2) perturbation theory, and the density functional theory (DFT) with the Perdew-Wang (PW91) functional as the exchange or the correlation part. The HF calculations yield unbound potentials largely due to the exchange-repulsion interaction. In the MP2 calculations, the basis set effects on the repulsion exponent, the equilibrium bond length, the binding energy, and the asymptotic behavior of the calculated intermolecular potentials have been thoroughly studied. We have employed basis sets from the Slater-type orbitals fitted with Gaussian functions (STO-nG) (n=3-6) [Quantum Theory of Molecular and Solids: The Self-Consistent Field for Molecular and Solids (McGraw-Hill, New York, 1974), Vol. 4], Pople's medium size basis sets of Krishnan et al. [J. Chem. Phys. 72, 650 (1980)] [up to 6-311++G(3df,3pd)] to Dunning's correlation consistent basis sets [J. Chem. Phys. 90, 1007 (1989)] (cc-pVXZ and aug-cc-pVXZ) (X=D, T, and Q). With increasing basis size, the repulsion exponent and the equilibrium bond length converge at the 6-31G** basis set and the 6-311++G(2d,2p) basis set, respectively, while a large basis set (aug-cc-pVTZ) is required to converge the binding energy at a chemical accuracy (approximately 0.01 kcal/mol). Up to the largest basis set used, the asymptotic dispersion coefficient has not converged to the destined C6 value from molecular polarizability calculations. The slow convergence could indicate the inefficacy of using the MP2 calculations with Gaussian-type functions to model the asymptotic behavior. Both the basis set superposition error (BSSE) corrected and uncorrected results are presented to emphasize the importance of including such corrections. Only the BSSE corrected results systematically converge to the destined potential curve with increasing basis size. The DFT calculations generate a wide range of interaction patterns, from purely unbound to strongly bound, underestimating or overestimating the binding energy. The binding energy calculated using the PW91PW91 functional and the equilibrium bond length calculated using the PW91VP86 functional are close to the MP2 results at the basis set limit.  相似文献   

16.
The basis set convergence of explicitly correlated double-hybrid density functional theory (DFT) is investigated using the B2GP-PLYP functional. As reference values, we use basis set limit B2GP-PLYP-F12 reaction energies extrapolated from the aug(')-cc-pV(Q+d)Z and aug(')-cc-pV(5+d)Z basis sets. Explicitly correlated double-hybrid DFT calculations converge significantly faster to the basis set limit than conventional calculations done with basis sets saturated up to the same angular momentum (typically, one "gains" one angular momentum in the explicitly correlated calculations). In explicitly correlated F12 calculations the VnZ-F12 basis sets converge faster than the orbital A(')VnZ basis sets. Furthermore, basis set convergence of the MP2-F12 component is apparently faster than that of the underlying Kohn-Sham calculation. Therefore, the most cost-effective approach consists of combining the MP2-F12 correlation energy from a comparatively small basis set such as VDZ-F12 with a DFT energy from a larger basis set such as aug(')-cc-pV(T+d)Z.  相似文献   

17.
18.
19.
We present time-dependent density functional theory (TDDFT) calculations of the electronic optical rotation (ORP) for seven oxirane and two aziridine derivatives in the gas phase and in solution and compare the results with the available experimental values. For seven of the studied molecules it is the first time that their optical rotation was studied theoretically and we have therefore investigated the influence of several settings in the TDDFT calculations on the results. This includes the choice of the one-electron basis set, the exchange-correlation functional or the particular polarizable continuum model (PCM). We can confirm that polarized quadruple zeta basis sets augmented with diffuse functions are necessary for converged results and find that the aug-pc-3 basis set is a viable alternative to the frequently employed aug-cc-pVQZ basis set. Based on our study, we cannot recommend the generalized gradient functional KT3 for calculations of the ORP in these compounds, whereas the hybrid functional PBE0 gives results quite similar to the long-range correct CAM−B3LYP functional. Finally, we observe large differences in the solvent effects predicted by the integral equation formalism of PCM and the SMD variant of PCM. For the majority of solute/solvent combinations in this study, we find that the SMD model in combination with the PBE0 functional and the aug-pc-3 basis set gives the best agreement with the experimental values.  相似文献   

20.
We have calculated the intermolecular interaction potentials of the silane dimer at the D3d conformation using the Hartree-Fock (HF) self-consistent theory, the correlation-corrected second-order M?ller-Plesset (MP2) perturbation theory, and the density functional theory (DFT) with 108 functionals chosen from the combinations of 9 exchange and 12 correlation functionals. Single-point coupled cluster [CCSD(T)] calculations have also been carried out to calibrate the correlation effect. The HF calculations yield unbound potentials largely because of the exchange-repulsion interaction. In the MP2 calculations, the basis set effects on the repulsion exponent, the equilibrium bond length, the binding energy, and the asymptotic behavior of the calculated intermolecular potentials have been thoroughly studied. We have employed basis sets from the Slater type orbitals fitted with Gaussian functions (STO-nG, n = 3 approximately 6), Pople's medium size basis sets [up to 6-311++G(3df,3pd)], to Dunning's correlation consistent basis sets (cc-pVXZ and aug-cc-pVXZ, X = D, T, Q). With increasing basis size, the repulsion exponent and the equilibrium bond length converge at the 6-31G** basis set and the 6-311++G(3d,3p) basis set, respectively, while a large basis set (aug-cc-pVTZ) is required to converge the binding energy at a chemical accuracy ( approximately 0.05 kcal/mol). Up to the largest basis set used, the asymptotic dispersion coefficient has not converged to the expected C6 value from molecular polarizability calculations. We attribute the slow convergence partly to the inefficacy of using the MP2 calculations with Gaussian type functions to model the asymptotic behavior. Both the basis set superposition error (BSSE) corrected and uncorrected results are presented to emphasize the importance of including such corrections. Only the BSSE corrected results systematically converge to the expected potential curve with increasing basis size. The DFT calculations generate a wide range of interaction patterns, from purely unbound to strongly bound, underestimating or overestimating the binding energy. The binding energies calculated using the OPTXHCTH147, PBEVP86, PBEP86, PW91TPSS, PW91PBE, and PW91PW91 functionals and the equilibrium bond lengths calculated using the MPWHCTH93, TPSSHCTH, PBEVP86, PBEP86, PW91TPSS, PW91PBE, and PW91PW91 functionals are close to the MP2 results using the 6-311++G(3df,3pd) basis set. A correlation between the calculated DFT potentials and the exchange and correlation enhancement factors at the low-density region has been elucidated. The asymptotic behaviors of the DFT potentials are also analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号