首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The effect of calcination temperature on the state of the active component of iron-containing catalysts prepared by the impregnation of silica gel with a solution of FeSO4 and on their catalytic properties in selective H2S oxidation to sulfur was studied. With the use of thermal analysis, XPS, and Mössbauer spectroscopy, it was found that an X-ray amorphous iron-containing compound of complex composition was formed on the catalyst surface after thermal treatment in the temperature range of 400–500°C. This compound contained Fe3+ cations in three nonequivalent positions characteristic of various oxy and hydroxy sulfates and oxide and sulfate groups as anions. Calcination at 600°C led to the almost complete removal of sulfate groups; as a result, the formation of an oxide structure came into play, and it was completed by the production of finely dispersed iron oxide in the ?-Fe2O3 modification (the average particle size of 3.2 nm) after treatment at 900°C. As the calcination temperature was increased from 500 to 700°C, an increase in the catalyst activity in hydrogen sulfide selective oxidation was observed because of a change in the state of the active component. A comparative study of the samples by temperature-programmed sulfidation made it possible to establish that an increase in the calcination temperature leads to an increase in the stability of the iron-containing catalysts to the action of a reaction atmosphere.  相似文献   

2.
Several transition metal-mediated oxidations using hypervalent iodine species are reported. A convenient procedure for preparation of iodylarenes via RuCl3-catalyzed oxidation of iodoarenes has been developed. This procedure allows the generation of highly reactive monomeric iodine(V) species, which are excellent oxidants toward alcohols and hydrocarbons in situ. A broad range of substrates can be oxidized to carbonyl compounds by a tandem catalytic system based on the Ru(III)-catalyzed reoxidation of ArIO to ArIO2 using Oxone® as oxidant. It was shown that electrophilic iodine(III) species, originating from oligomeric iodosylbenzene sulfate (PhIO)3SO3, are efficient oxygenating agents in catalytic oxidation of aromatic hydrocarbons in the presence of metalloporphyrin complexes.  相似文献   

3.
采用银修饰介孔磷钨酸/二氧化硅(mesoporous HPW/SiO2)催化剂,并研究了其在模拟柴油和真实柴油氧化脱硫反应中的催化性能。通过银修饰介孔HPW/SiO2,结合银离子对有机硫化物的选择吸附性和HPW对有机硫化物的催化氧化活性,以达到选择氧化脱硫的目的。模拟柴油分别采用石油醚、苯、1-辛烯和二苯并噻吩配制,当银离子与HPW的摩尔比为2时,催化剂具有最高的选择催化氧化活性。采用N2 吸附-脱附、XRD、UV-vis和EDS表征了银修饰的介孔HPW/SiO2催化剂,结果表明,银物种分散均匀且以Ag+形式存在。真实柴油的脱硫研究表明,相比介孔HPW/SiO2催化剂,修饰的催化剂介孔Ag2-HPW/SiO2脱硫率提高了4.6%,初始硫含量为1800×10-6的直馏柴油能被脱除至228×10-6,脱硫率为87.3%。介孔Ag2-HPW/SiO2催化剂具有良好的再生性能,经再生处理后,Ag的损失量极少,其三次脱硫率达到84.8%。  相似文献   

4.
Photothermoluminescence (PTL) of petroleum luminophores of pyrolytic origin was studied over a wide temperature range (−196 to 250°C). Problems related to the mechanism and stages of photochemical processes in petroleum luminophores are discussed. It was revealed that low-temperature PTL maximums at −165, −108, and −75°C are due to recombination of trapped electrons with radical cations of polycyclic aromatic hydrocarbons (PAHs) during the freezing out of the motions of H, O2, and R·. High-temperature (relative to the luminophore freezing points) PTL maximums at 52, 105–120, and 130–140°C are due to processes associated with the oxidation of R·, PAHs, and olefins by 3O2 and 1O2.  相似文献   

5.

A simple Pd2+ ligand exchanger was prepared and applied for isolation of aromatic heterocyclic sulfur compounds (S-PAHs) from petroleum condensate oil. The ligand exhibited excellent isolation efficiency and selectivity towards S-PAHs. The chromatograms of pre-isolated S-PAHs recorded by universal flame ionization (FID) and mass spectrum (MS) detections are similar to selective sulfur atomic emission detector chromatograms, indicated from traces or absence of hydrocarbons in FID and MS chromatograms. Nitrogen adsorption, electronic microscope, and X-ray diffraction techniques were employed to confirm the formation of capped Pd2+ nanoparticle dispersion within the silica framework. The results obtained revealed that Pd2+ ions exist as dispersed capped nanoparticles sized between 69 and 79 nm that can be rationalized for their enhanced isolation selectivity towards the S-PAH fraction of petroleum condensate oil.

  相似文献   

6.
A simple Pd2+ ligand exchanger was prepared and applied for isolation of aromatic heterocyclic sulfur compounds (S-PAHs) from petroleum condensate oil. The ligand exhibited excellent isolation efficiency and selectivity towards S-PAHs. The chromatograms of pre-isolated S-PAHs recorded by universal flame ionization (FID) and mass spectrum (MS) detections are similar to selective sulfur atomic emission detector chromatograms, indicated from traces or absence of hydrocarbons in FID and MS chromatograms. Nitrogen adsorption, electronic microscope, and X-ray diffraction techniques were employed to confirm the formation of capped Pd2+ nanoparticle dispersion within the silica framework. The results obtained revealed that Pd2+ ions exist as dispersed capped nanoparticles sized between 69 and 79 nm that can be rationalized for their enhanced isolation selectivity towards the S-PAH fraction of petroleum condensate oil.  相似文献   

7.
In the search for highly reactive oxidants we have identified high‐valent metal–fluorides as a potential potent oxidant. The high‐valent Ni–F complex [NiIII(F)(L)] ( 2 , L=N,N′‐(2,6‐dimethylphenyl)‐2,6‐pyridinedicarboxamidate) was prepared from [NiII(F)(L)]? ( 1 ) by oxidation with selectfluor. Complexes 1 and 2 were characterized by using 1H/19F NMR, UV‐vis, and EPR spectroscopies, mass spectrometry, and X‐ray crystallography. Complex 2 was found to be a highly reactive oxidant in the oxidation of hydrocarbons. Kinetic data and products analysis demonstrate a hydrogen atom transfer mechanism of oxidation. The rate constant determined for the oxidation of 9,10‐dihydroanthracene (k2=29 m ?1 s?1) compared favorably with the most reactive high‐valent metallo‐oxidants. Complex 2 displayed reaction rates 2000–4500‐fold enhanced with respect to [NiIII(Cl)(L)] and also displayed high kinetic isotope effect values. Oxidative hydrocarbon and phosphine fluorination was achieved. Our results provide an interesting direction in designing catalysts for hydrocarbon oxidation and fluorination  相似文献   

8.
Chromic acid oxidation of dl-mandelic acid in the presence and absence of different promoters has been studied in aqueous media under the kinetic conditions [mandelic acid]T ? [Cr(VI)]T and [promoter]T ? [Cr(VI)]T at 30 °C. The promoters used in this oxidation reaction, picolinic acid (PA), 2,2′-bipyridine (bpy), and 1,10-phenanthroline (phen), are strong chelating ligands which form complexes with most transition metal ions. The reaction is first-order with regard to [H+], [mandelic acid]T, and [Cr(VI)]T and also has first-order dependence on [promoter]T. HCrO4 ? was found to be kinetically active in the absence of promoters; in the presence of promoters the Cr(VI)–promoter complexes were believed to be the active oxidants. In this path the Cr(VI)-promoter complex in each case undergoes nucleophilic attack by the mandelic acid to form a ternary complex which subsequently undergoes redox decomposition involving 3e transfer as the rate-determining step. Among the three promoters oxidation is much faster with 1,10-phenanthroline.  相似文献   

9.
Oxidation reactions are a key technology to transform hydrocarbons from petroleum feedstock into chemicals of a higher oxidation state, allowing further chemical transformations. These bulk‐scale oxidation processes usually employ molecular oxygen as the terminal oxidant as at this scale it is typically the only economically viable oxidant. The produced commodity chemicals possess limited functionality and usually show a high degree of symmetry thereby avoiding selectivity issues. In sharp contrast, in the production of fine chemicals preference is still given to classical oxidants. Considering the strive for greener production processes, the use of O2, the most abundant and greenest oxidant, is a logical choice. Given the rich functionality and complexity of fine chemicals, achieving regio/chemoselectivity is a major challenge. This review presents an overview of the most important catalytic systems recently described for aerobic oxidation, and the current insight in their reaction mechanism.  相似文献   

10.
Suppressed ion chromatography (IC) based on in-sample oxidation and SPE is described for total sulfur dioxide determination in red wines. In this method, sulfur dioxide was converted to stable sulfate ion through a simple H2O2 oxidation step and then the impurities were removed with C-18 micro-column SPE pretreatment. Finally, the sulfate was determined by suppressed ion chromatography coupled with conductivity detection and the content of total sulfur dioxide could be obtained through sulfate content by blank deduction method. By using a mixture of NaHCO3 and Na2CO3 as mobile phase, the analysis of one sample with nine anions could be completed within 25 min. For sulfate detection, a linear calibration curve with correlation coefficient of 0.9993 was obtained from the peak area with low detection limit (0.45 mg L?1, 3σ) and excellent repeatability (RSD?=?1.12%, n?=?6). This method was applied to sulfur dioxide determination in real wine samples and compared with conventional iodometry.  相似文献   

11.
原油中有机硫化物成因的硫酸盐热化学还原反应模拟研究   总被引:5,自引:1,他引:4  
原油中部分有机硫化物来源于硫酸盐热化学还原反应。利用高压釜在高温高压含水条件下对正戊烷 硫酸镁反应体系进行了热模拟实验研究。通过气相色谱仪、微库仑仪、毛细管气相色谱/脉冲火焰光度检测器、红外光谱仪及X射线衍射仪,对气、油、固三相产物进行了分析。结果表明,硫酸盐热化学还原反应在425℃~525℃可以进行,主要生成氧化镁、炭、硫化氢、二氧化碳以及硫醇、硫醚和噻吩类等有机硫化物。根据动力学模型计算出该反应活化能为58.0kJ/mol。  相似文献   

12.
A few redox systems containing thiourea as reductant have been found to be quite effective in initiating vinyl polymerization in aqueous media and polymers obtained in the process have all been found to contain amino endgroups to various extents by the application of dye techniques. Quite a few oxidants have so far been utilized for this purpose; among them are ferric chloride (Fe3+), ethylene dibiguanide complex salts of tripositive silver (Ag3+), hydrogen peroxide (H2O2), persulfate (S2O82?), bromate (BrO3?) + hydrochloric acid (HCl). In case of oxidants Fe3+ and Ag3+, amino endgroups are mainly incorporated in polymers; but in case of oxidants H2O2 and S2O82?, fragments of oxidants are also incorporated as hydroxyl and sulfate endgroups. BrO3?, however, forms a very efficient redox-initiating system with thiourea, as is evidenced by its capability of polymerizing even hydroquinone-stabilized water-soluble vinyl monomers at very low temperature (~0°C.) and at a quite rapid rate. Besides amino endgroups, sulfonate endgroups have also been detected in polymers in this case, and the relative extents of these two types of endgroups depend generally on the acid concentration of the system. Evidences so far collected indicate the generation of S? C(?NH)NH2 radicals in the system by oxidation of isothiourea, HS? C(?NH)NH2, and these are incorporated in polymers as endgroups. Sulfonate endgroups may be generated by oxidation of these amino-bearing endgroups. Suitable initiation mechanisms have been suggested in each case.  相似文献   

13.
Gas chromatography with mass spectrometric detection was used to analyze bitumens isolated from bottom sediments of peat lakes contaminated with petroleum products. Endogenous hydrocarbons are characterized by the presence of n-alkanes with an odd number of carbon atoms in the molecule in the characteristic region of C23–C33, the absence of a “hump” characteristic of oil products in the chromatogram, and the presence of light hydrocarbons, eluting in the initial part of the chromatogram (light hydrocarbons are usually lost when the sample is dried). The distribution profile of odd n-alkanes is used to assess the contribution of endogenous hydrocarbons to the “hydrocarbon index” with the help of the pattern recognition method. The concentration of light hydrocarbons is from 50 and 300–400 to 3500–5000 mg/kg for a number of samples and even up to 26000 mg/kg in some samples. The concentration of petroleum hydrocarbons and heteroatomic compounds varies from the lowest values of 30–80 mg/kg up to 20000 mg/kg and higher.  相似文献   

14.
A high‐surface‐area boehmite was used as the support for a series of vanadium phosphate catalysts. The catalysts were prepared by heating of V2O5 in an isobutyl alcohol and benzyl alcohol mixture at 140°C for 5 h to reduce V5+ to more active V4+ in the presence of phosphoric acid. Then a series of catalysts with various VPO loadings on boehmite were synthesized. The catalysts were characterized using various techniques. The catalysts were utilized for extraction combined with catalytic oxidation of dibenzothiophene. The important factors influencing the desulfurization process, including reaction time, temperature, H2O2, catalyst loading, catalyst amount and solvents, were systematically investigated. Under the optimized reaction conditions, i.e. 30 mg of catalyst loading at 50°C and in 60 min, sulfur removal reached 94%. The catalyst was recycled and reused five times.  相似文献   

15.

Sodium hydroxide solutions are used in petroleum refining to remove hydrogen sulfide (H2S) and mercaptans from various hydrocarbon streams. The resulting sulfide-laden waste stream is called spent-sulfidic caustic. An aerobic enrichment culture was previously developed using a gas mixture of H2S and methylmercaptan (MeSH) as the soleenergy source. This culture has now been immobilized in a novel support matrix, DuP ont BIO-SEPTM beads, and is used to biotreat a refinery spent-sulfidic caustic containing both inorganic sulfide and mercaptans in a continuous flow, fluidized-bed column bioreactor. Complete oxidation of both inorganic and organic sulfur to sulfate was observed with no breakthrough of H2S and <2 ppmv of MeSH produced in the bioreactor outlet gas. Excessive buildup of sulfate (>12 g/L) in the bioreactor medium resulted in an upset condition evidenced by excessive MeSH breakthrough. Therefore, bioreactor performance was limited by the steady-state sulfate concentration. Further improvement in volumetric productivity of a bioreactor system based on this enrichment culture will be dependent on maintenance of sulfate concentrations below inhibitory levels.

  相似文献   

16.
In this study, the oxidation behavior of crude oils in the presence and absence of rock cuttings was investigated by thermogravimetry/derivative thermogravimetry (TG/DTG) techniques. Prior to these tests, the composition of cuttings and properties of crude oils were analyzed. Three obvious reaction regions were observed from the TG/DTG curves which are recognized as low-temperature oxidation (LTO), fuel deposition (FD), and high-temperature oxidation. The effects of light components (C7–15), heavy fractions (asphaltene, paraffin, resin), and cutting on oil oxidation behavior were analyzed. Kinetic analysis of crude oils and oil + cutting mixtures was performed by Arrhenius method, and the data were analyzed at last. Results show that high content C7–15 hydrocarbons can provide negative effect on the LTO behavior of crude oil. On the contrary, the high content unsaturated heavy hydrocarbons including asphaltene, paraffin, and resin are benefit for the oxidation performance. In addition, a shortened FD stage and higher peak temperature in LTO region are observed by addition of cutting. Cutting especially clay in it plays an active role of catalyzing in oil oxidation reaction.  相似文献   

17.
The selective oxidation of primary alcohols to aldehydes by O2 instead of stoichiometric oxidants (for example, MnVII, CrVI, and OsIV) is an important but challenging process. Most heterogeneous catalytic systems (thermal and photocatalysis) require noble metals or harsh reaction conditions. Here we show that the Bi24O31Br10(OH)δ photocatalyst is very efficient in the selective oxidation of a series of aliphatic (carbon chain from C1 to C10) and aromatic alcohols to their corresponding aldehydes/ketones under visible‐light irradiation in air at room temperature, which would be challenging for conventional thermal and light‐driven processes. High quantum efficiencies (71 % and 55 % under 410 and 450 nm irradiation) are reached in a representative reaction, the oxidation of isopropanol. We propose that the outstanding performance of the Bi24O31Br10(OH)δ photocatalyst is associated with basic surface sites and active lattice oxygen that boost the dehydrogenation step in the photo‐oxidation of alcohols.  相似文献   

18.
The oxidation of D ‐mannitol by cerium(IV) has been studied spectrophotometrically in aqueous sulfuric acid medium at 25°C at constant ionic strength of 1.60 mol dm?3. A microamount of ruthenium(III) (10?6 mol dm?3) is sufficient to enhance the slow reaction between D ‐mannitol and cerium(IV). The oxidation products were identified by spot test, IR and GC‐MS spectra. The stoichiometry is 1:4, i.e., [D ‐mannitol]: [Ce(IV)] = 1:4. The reaction is first order in both cerium(IV) and ruthenium(III) concentrations. The order with respect to D ‐mannitol concentration varies from first order to zero order as the D ‐mannitol concentration increases. Increase in the sulfuric acid concentration decreases the reaction rate. The added sulfate and bisulfate decreases the rate of reaction. The active species of oxidant and catalyst are Ce(SO4)2 and [Ru(H2O)6]3+, respectively. A possible mechanism is proposed. The activation parameters are determined with respect to a slow step and reaction constants involved have been determined. © 2010 Wiley Periodicals, Inc. Int J Chem Kinet 42: 440–452, 2010  相似文献   

19.
Non‐oxidative methane dehydroaromatization is a promising reaction to directly convert natural gas into aromatic hydrocarbons and hydrogen. Commercialization of this technology is hampered by rapid catalyst deactivation because of coking. A novel approach is presented involving selective oxidation of coke during methane dehydroaromatization at 700 °C. Periodic pulsing of oxygen into the methane feed results in substantially higher cumulative product yield with synthesis gas; a H2/CO ratio close to two is the main side‐product of coke combustion. Using 13C isotope labeling of methane it is demonstrated that oxygen predominantly reacts with molybdenum carbide species. The resulting molybdenum oxides catalyze coke oxidation. Less than one‐fifth of the available oxygen reacts with gaseous methane. Combined with periodic regeneration at 550 °C, this strategy is a significant step forward, towards a process for converting methane into liquid hydrocarbons.  相似文献   

20.
Iron oxide‐supported gold samples were prepared by co‐precipitation from HAuCl4 and Fe(NO3)3. The activities of the samples as CO oxidation catalysts were tested without thermal treatment and following treatments in flows of He and O2 at various temperatures. It was found that the untreated samples and those treated in a flow of He at 150 °C were more active than samples that had been treated at 400 °C in either a flow of O2 or of He. Infrared spectra recorded during CO oxidation catalysis indicate the presence of bonded CO molecules to cationic gold on all samples, whereas spectra of the least active catalysts indicate a predominant presence of Fe2+ carbonyls, which were highly stable under the conditions of our experiments. Our results indicate that in the least active samples the Fe2+‐bound CO blocks sites that would otherwise be available for oxygen activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号