首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
A chemical feature-based pharmacophore model was developed for Tumor Necrosis Factor-α converting enzyme (TACE) inhibitors. A five point pharmacophore model having two hydrogen bond acceptors (A), one hydrogen bond donor (D) and two aromatic rings (R) with discrete geometries as pharmacophoric features was developed. The pharmacophore model so generated was then utilized for in silico screening of a database. The pharmacophore model so developed was validated by using four compounds having proven TACE inhibitory activity which were grafted into the database. These compounds mapped well onto the five listed pharmacophoric features. This validated pharmacophore model was also used for alignment of molecules in CoMFA and CoMSIA analysis. The contour maps of the CoMFA/CoMSIA models were utilized to provide structural insight for activity improvement of potential novel TACE inhibitors. The pharmacophore model so developed could be used for in silico screening of any commercial/in house database for identification of TACE inhibiting lead compounds, and the leads so identified could be optimized using the developed CoMSIA model. The present work highlights the tremendous potential of the two mutually complementary ligand-based drug designing techniques (i.e. pharmacophore mapping and 3D-QSAR analysis) using TACE inhibitors as prototype biologically active molecules.  相似文献   

2.
The anti-HIV-1 activity of mangiferin was evaluated. Mangiferin can inhibit HIV-1(Ⅲ)(B) induced syncytium formation at non-cytotoxic concentrations, with a 50% effective concentration (EC??) at 16.90 μM and a therapeutic index (TI) above 140. Mangiferin also showed good activities in other laboratory-derived strains, clinically isolated strains and resistant HIV-1 strains. Mechanism studies revealed that mangiferin might inhibit the HIV-1 protease, but is still effective against HIV peptidic protease inhibitor resistant strains. A combination of docking and pharmacophore methods clarified possible binding modes of mangiferin in the HIV-1 protease. The pharmacophore model of mangiferin consists of two hydrogen bond donors and two hydrogen bond acceptors. Compared to pharmacophore features found in commercially available drugs, three pharmacophoric elements matched well and one novel pharmacophore element was observed. Moreover, molecular docking analysis demonstrated that the pharmacophoric elements play important roles in binding HIV-1 protease. Mangiferin is a novel nonpeptidic protease inhibitor with an original structure that represents an effective drug development strategy for combating drug resistance.  相似文献   

3.
Summary The β3-adrenoreceptor (β3-AR) has been shown to mediate various pharmacological and physiological effects such as lipolysis, thermogenesis, and intestinal smooth muscle relaxation. It also plays an important role in glucose homeostasis and energy balance. Molecular modeling studies were undertaken to develop predictive pharmacophoric hypothesis and 3D-QSAR model, which may explain variations in β3-AR agonistic activity in terms of chemical features and physicochemical properties. The two softwares, CATALYST for pharmacophoric alignment and APEX-3D for 3D-QSAR modeling were used to establish the structure activity relationships for β3-AR agonistic activity. Among the several statistically significant models, the selection of the best pharmacophore and 3D-QSAR model was based on its ability to estimate the activity of external test sets of similar and different structural types along with the reasonable consistency of the model with the limited information of the active site of β3-AR. The final 3D-QSAR model was derived using the pharmacophoric alignments from the hypothesis which consisted of four chemical features: basic or positive ionizable feature on the nitrogen of the aryloxypropylamino group, two ring aromatic features corresponding to the phenyl ring of the phenoxide and the benzenesulphonamido groups and a hydrogen-bond donor (HBD) in the vicinity of the nitrogen atom of the benzenesulphonamido group with the most active molecule mapping in an energetically favorable extended conformation. This hypothesis was in agreement with the site directed mutagenesis studies on human β3-AR and correlated well the observed and estimated activity both in, training and both the external test sets. It also mapped reasonably well to six β3-AR agonists of different structural classes under clinical development and thus this hypothesis may have a universal applicability in providing a powerful template for virtual screening and also for designing new chemical entities (NCEs) as β3-AR agonists.CDRI communication number 6202. *To whom correspondence should be addressed. Fax: +91-0522-223405; E-mail: anilsak@hotmail.com  相似文献   

4.
钾离子通道开放剂的药效团模型分析   总被引:2,自引:1,他引:2  
In this paper, a set of ATP sensitive K+ channel openers (KCO), whose structure are different, were investigated with the aim to develope our previously defined KCO's pharmacophore model. To validate the effectiveness of the pharmacophore model, A comparative molecule field analysis (CoMFA) was proceeded, aligning the molecules according to the requirernent of the model, and good results were obtained. This pharmacophore model may be a start point to design new KCO compounds.  相似文献   

5.
Summary Previous structure-activity studies of captopril and related active angiotensin-converting enzyme (ACE) inhibitors have led to the conclusion that the basic structural requirements for inhibition of ACE involve (a) a terminal carboxyl group; (b) an amido carbonyl group; and (c) different types of effective zinc (Zn) ligand functional groups. Such structural requirements common to a set of compounds acting at the same receptor have been used to define a pharmacophoric pattern of atoms or groups of atoms mutually oriented in space that is necessary for ACE inhibition from a stereochemical point of view. A unique pharmacophore model (within the resolution of approximately 0.15 Å) was observed using a method for systematic search of the conformational hyperspace available to the 28 structurally different molecules under study. The method does not assume a common molecular framework, and, therefore, allows comparison of different compounds that is independent of their absolute orientation.Consequently, by placing the carboxyl binding group, the binding site for amido carbonyl, and the Zn atom site in positions determined by ideal binding geometry with the inhibitors' functional groups, it was possible to clearly specify a geometry for the active site of ACE.  相似文献   

6.
Three neurokinin (NK) antagonist pharmacophore models (Models 1-3) accounting for hydrogen bonding groups in the 'head' and 'tail' of NK receptor ligands have been developed by use of a new procedure for treatment of hydrogen bonds during superimposition. Instead of modelling the hydrogen bond acceptor vector in the strict direction of the lone pair, an angle is allowed between the hydrogen bond acceptor direction and the ideal lone pair direction. This approach adds flexibility to hydrogen bond directions and produces more realistic RMS values. By using this approach, two novel pharmacophore models were derived (Models 2 and 3) and a hydrogen bond acceptor was added to a previously published NK2 pharmacophore model [Poulsen et al., J. Comput.-Aided Mol. Design, 16 (2002) 273] (Model 1). Model 2 as well as Model 3 are described by seven pharmacophore elements: three hydrophobic groups, three hydrogen bond acceptors and a hydrogen bond donor. Model 1 contains the same hydrophobic groups and hydrogen bond donor as Models 2 and 3, but only one hydrogen bond acceptor. The hydrogen bond acceptors and donor are represented as vectors. Two of the hydrophobic groups are always aromatic rings whereas the other hydrophobic group can be either aromatic or aliphatic. In Model 1 the antagonists bind in an extended conformation with two aromatic rings in a parallel displaced and tilted conformation. Model 2 has the same two aromatic rings in a parallel displaced conformation whereas Model 3 has the rings in an edge to face conformation. The pharmacophore models were evaluated using both a structure (NK receptor homology models) and a ligand based approach. By use of exhaustive conformational analysis (MMFFs force field and the GB/SA hydration model) and least-squares molecular superimposition studies, 21 non-peptide antagonists from several structurally diverse classes were fitted to the pharmacophore models. More antagonists could be fitted to Model 2 with a low RMS and a low conformational energy penalty than to Models 1 and 3. Pharmacophore Model 2 was also able to explain the NK1, NK2 and NK3 subtype selectivity of the compounds fitted to the model. Three NK 7TM receptor models were constructed, one for each receptor subtype. The location of the antagonist binding site in the three NK receptor models is identical. Compounds fitted to pharmacophore Model 2 could be docked into the NK1, NK2 and NK3 receptor models after adjustment of the conformation of the flexible linker connecting the head and tail. Models I and 3 are not compatible with the receptor models.  相似文献   

7.
刘景陶  吉文涛  王炳华 《化学通报》2020,83(12):1138-1148
Pim-1 激酶通过作用于多种信号通路或靶点影响肿瘤的发生发展,近年来被认为是肿瘤治疗的良好靶标。本文采用SYBYL-X2. 1. 1软件中的TopomerCoMFA、GALAHAD模块建立计算机模型,研究39个基于6-氮杂吲唑环的Pim-1激酶抑制剂的三维定量构效关系及药效团特征元素。结果显示,TopomerCoMFA建模所得交叉验证系数(q2)和相关系数(r2)分别为0. 756和0. 951,结合外部验证表明此3D-QSAR模型具有较高预测能力及较好的统计学稳定性,同时,用等势图描述了R1、R2基团处立体场、静电场对活性的具体影响。药效团研究结果表明,含氢键受体的芳香杂环母核结构,以及侧链取代基中含有芳香杂环结构对化合物的活性贡献较大。最后根据上述模型信息新设计了15个Pim-1激酶抑制剂分子并完成活性预测及分子对接模式研究,其中4个分子的预测pIC50高于建模分子中活性最好的化合物17,Surflex-Dock分析显示新设计分子均与Pim-1激酶形成较强氢键相互作用。基于6-氮杂吲唑环的Pim-1激酶抑制剂的3D-QSAR模型以及药效团模型可用于指导新型抑制剂的结构优化,为设计和开发具有较高活性的新型Pim-1激酶抑制剂提供有效帮助。  相似文献   

8.
Computer‐aided drug design was performed on a diverse set of 103 biphenyl derivatives that demonstrated antidiabetic activity by restraining the protein tyrosine phosphatase 1B (PTP 1B) receptor. A four‐point pharmacophore hypothesis using the PHASE module of Schrödinger suite with one hydrogen bond acceptor (A) and three aromatic rings (R) as pharmacophoric features was generated. The hypothesis, ARRR.2, considered the best hypothesis in the present study is characterized by survival score (3.553), cross‐validated r2 (Q2) (0.722), regression coefficient (0.949), Pearson R (0.867), and F value (492.6). The developed pharmacophore model was externally validated by predicting the activity of test set molecules. Docking algorithm combined with the drug–receptor binding free energetic and pharmacokinetic drug profile envisaged a novel concept, which may provide structural insights for the development of potential PTP 1B inhibitors. The study also provided a valid rapport between pharmacophore drug mapping, atom‐based three‐dimensional quantitative structure–activity relationship, molecular docking, sitemap, molecular simulations, and pharmacokinetic prediction approaches demonstrating the trends in activity. The results of these ligand–receptor relationship studies may account to design a legitimate template for the development and optimization of highly selective and potent PTP 1B inhibitors. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
A neurokinin 2 (NK2) antagonist pharmacophore model has been developed on the basis of five non-peptide antagonists from several structurally diverse classes. To evaluate the pharmacophore model, another 20 antagonists were fitted to the model. By use of exhaustive conformational analysis (MMFFs force field and the GB/SA hydration model) and least-squares molecular superimposition studies, 23 of the 25 antagonists were fitted to the model in a low energy conformation with a low RMS value. The pharmacophore model is described by four pharmacophore elements: Three hydrophobic groups and a hydrogen bond donor represented as a vector. The hydrophobic groups are generally aromatic rings, but this is not a requirement. The antagonists bind in an extended conformation with two aromatic rings in a parallel displaced and tilted conformation. The model was able to explain the enantioselectivity of SR48968 and GR159897.  相似文献   

10.
Based on the results obtained with different automated computational approaches as applied to the study of eleven high-affinity agonists of the neuronal nicotine acetylcholine receptor (nAChR), belonging to different chemical classes, new relevant features were detected which complement the existing pharmacophores. Convergent results from DISCO (Distance Comparison), QXP (Quick Explore), Catalyst/HipHop, and MIPSIM (Molecular Interaction Potential Similarity) allowed us to identify and locate, in a well defined spatial arrangement, three geometrically independent key structural features: (i) a positively charged nitrogen atom for ionic or hydrogen bond interactions, (ii) a lone pair of the pyridine nitrogen or a specific lone pair of a carbonyl oxygen, as a hydrogen bond acceptor, and (iii) a centre of a hydrophobic area generally occupied by aliphatic cycles. The pharmacophore presented herein, along with predictive 2D and 3D QSAR models recently developed in our group, could represent valuable computational tools for the design of new nAChR agonists having therapeutical potential.  相似文献   

11.
By using hologram quantitative structure-activity relationship (HQSAR) and comparative molecular field analysis (CoMFA) methods, the relationships between the structures of 49 gallic acid derivatives and their analgesic activity have been investigated to yield statistically reliable models with considerable predictive power. The best HQSAR model was generated using atoms, bond and connectivity as fragment distinction parameters and fragment size 5-7 from a hologram length of 307 with 3 components. High conventional r2 (r2 = 0.825) and cross-validation r2 (r2(cv) = 0.726) values were obtained. CoMFA analyses varying lattice size and location, grid spacing, probe charges and using, Tripos standard and Indicator force field were performed. The best model was developed with 4 components using sp3-hybridized carbon atom with +1.0 charge as probe, grid spacing (2 A), lattice offset (1.0, 3.0, -2.5). The CoMFA model showed a conventional correlation coefficient r2 of 0.889 and across-validation r2(cv) equals to 0.633. The robustness and predictive ability of the HQSAR and CoMFA models have been validated by means of an external test set. The results indicate that both models possess high statistical quality in the prediction of analgesic potency of novel gallic acid analogs.  相似文献   

12.
Numerous studies postulated the possible modes of anthelmintic activity by targeting alternate or extended regions of colchicine binding domain of helminth β-tubulin. We present three interaction zones (zones vide −1 to −3) in the colchicine binding domain of Haemonchus contortus (a helminth) β-tubulin homology model and developed zone-wise structure-based pharmacophore models coupled with molecular docking technique to unveil the binding hypotheses. The resulted ten structure-based hypotheses were then refined to essential three point pharmacophore features that captured recurring and crucial non-covalent receptor contacts and proposed three characteristics necessary for optimal zone-2 binding: a conserved pair of H bond acceptor (HBA to form H bond with Asn226 residue) and an aliphatic moiety of molecule separated by 3.75 ± 0.44 Å. Further, an aliphatic or a heterocyclic group distant (11.75 ± 1.14 Å) to the conserved aliphatic site formed the third feature component in the zone-2 specific anthelmintic pharmacophore model. Alternatively, an additional HBA can be substituted as a third component to establish H bonding with Asn204. We discern that selective zone-2 anthelmintics can be designed effectively by closely adapting the pharmacophore feature patterns and its geometrical constraints.  相似文献   

13.
Glycogen phosphorylase (GP(a)) is a specific target for the design of inhibitors and may prevent glycogenolysis under high glucose conditions in type II diabetes. The carboxamides first reported by Hoover D. J. et al. (J. Med. Chem. 1998, 41, 2934-2938) are one of the major classes of GP(a) inhibitors other than glucose derivatives. The recent, X-ray crystallographic analyses (Oikonomakos et al. Biochim. Biophys. Acta 2003, 1647, 325-332) have revealed a distinct mechanism of action for these inhibitors, which bind at a new allosteric site away from the inhibitory and catalytic sites. To elucidate the essential structural and physicochemical requirements responsible for binding to the GP(a) enzyme and to develop predictive models, CoMFA and docking studies have been carried out on a series of indole-2-carboxamide derivates. The CoMFA model developed using pharmacophoric alignments and hydrogen-bonding fields demonstrated high predictive ability against the training (r2 = 0.98, q2 = 0.68) and the test set (r2pred = 0.85). Further the superimposition of PLS coefficient contour maps from CoMFA with the GP(a) active site (PDB: 1lwo) has shown a high level of compatibility.  相似文献   

14.
The importance of the consideration of water molecules in the structural interpretation of ligand-derived pharmacophore models is explored. We compare and combine results from recently introduced methods for bound-water molecule identification in protein binding sites and ligand-superposition-based pharmacophore derivation, for the interpretation of ligand-derived pharmacophore models. In the analysis of thymidine kinase (HSV-1) and poly (ADP-ribose) polymerase (PARP), the concurrent application of both methods leads to an agreement in the prediction of tightly bound water molecules as key pharmacophoric points in the binding site of these proteins. This agreement has implications for approaching binding site analysis and consensus drug design, as it highlights how pharmacophore-based models of binding sites can include interaction features not only with protein groups but also with bound water molecules.  相似文献   

15.
The urgent need for novel HCV antiviral agents has provided an impetus for understanding the structural requisites of NS5B polymerase inhibitors at the molecular level. Toward this objective, comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) of 67 HCV NS5B polymerase inhibitors were performed using two methods. First, ligand-based 3D QSAR studies were performed based on the lowest energy conformations employing the atom fit alignment method. Second, receptor-based 3D QSAR models were derived from the predicted binding conformations obtained by docking all NS5B inhibitors at the allosteric binding site of NS5B (PDB ID: 2dxs). Results generated from the ligand-based model were found superior (r2cv values of 0.630 for CoMFA and 0.668 for CoMSIA) to those obtained by the receptor-based model (r2cv values of 0.536 and 0.561 for CoMFA and CoMSIA, respectively). The predictive ability of the models was validated using a structurally diversified test set of 22 compounds that had not been included in a preliminary training set of 45 compounds. The predictive r2 values for the ligand-based CoMFA and CoMSIA models were 0.734 and 0.800, respectively, while the corresponding predictive r2 values for the receptor-based CoMFA and CoMSIA models were 0.538 and 0.639, respectively. The greater potency of the tryptophan derivatives over that of the tyrosine derivatives was interpreted based on CoMFA steric and electrostatic contour maps. The CoMSIA results revealed that for a NS5B inhibitor to have appreciable inhibitory activity it requires hydrogen bond donor and acceptor groups at the 5-position of the indole ring and an R substituent at the chiral carbon, respectively. Interpretation of the CoMFA and CoMSIA contour maps in context of the topology of the allosteric binding site of NS5B provided insight into NS5B-inhibitor interactions. Taken together, the present 3D QSAR models were found to accurately predict the HCV NS5B polymerase inhibitory activity of structurally diverse test set compounds and to yield reliable clues for further optimization of the benzimidazole derivatives in the data set.  相似文献   

16.
In an effort to develop a quantitative ligand-binding model for the receptor tyrosine kinases, a pharmacophore search was first used to identify structural features that are common in two novel sets of 12 molecules of the 3-substituted indolin-2-ones and 19 compounds of the benzylidene malononitriles with low-to-high affinity for HER2, a kind of receptor tyrosine kinase. The common pharmacophore model based on these 31 compounds was used as a template to obtain the aligned molecular aggregate, which provided a good starting point for 3D-QSAR analysis of only the 19 benzylidene malononitriles. Two molecular field analysis (MFA) techniques, including CoMFA and CoMSIA, were used to derive the quantitative structure-activity relationships of the studied molecules. From the studied results, it was obvious that the 3D-QSAR models based on the pharmacophore alignment were superior to those based on the simple atom-by-atom fits. Considering the flexibility of the studied molecules and the difference between the active conformers and the energy-lowest conformers, the pharmacophore model can usually provide the common features for the flexible regions. Moreover, the best CoMSIA model based on the pharmacophore hypothesis gave good statistical measure from partial least-squares analysis (PLS) (q(2) = 0.71), which was slightly better than the CoMFA one. Our study demonstrated that pharmacophore modeling and CoMSIA research could be effectively combined. Results obtained from both methods helped with understanding the specific activity of some compounds and designing new specific HER2 inhibitors.  相似文献   

17.
Using CATALYST, a three-dimensional QSAR pharmacophore model for chloroquine(CQ)-resistance reversal was developed from a training set of 17 compounds. These included imipramine (1), desipramine (2), and 15 of their analogues (3-17), some of which fully reversed CQ-resistance, while others were without effect. The generated pharmacophore model indicates that two aromatic hydrophobic interaction sites on the tricyclic ring and a hydrogen bond acceptor (lipid) site at the side chain, preferably on a nitrogen atom, are necessary for potent activity. Stereoelectronic properties calculated by using AM1 semiempirical calculations were consistent with the model, particularly the electrostatic potential profiles characterized by a localized negative potential region by the side chain nitrogen atom and a large region covering the aromatic ring. The calculated data further revealed that aminoalkyl substitution at the N5-position of the heterocycle and a secondary or tertiary aliphatic aminoalkyl nitrogen atom with a two or three carbon bridge to the heteroaromatic nitrogen (N5) are required for potent "resistance reversal activity". Lowest energy conformers for 1-17 were determined and optimized to afford stereoelectronic properties such as molecular orbital energies, electrostatic potentials, atomic charges, proton affinities, octanol-water partition coefficients (log P), and structural parameters. For 1-17, fairly good correlation exists between resistance reversal activity and intrinsic basicity of the nitrogen atom at the tricyclic ring system, frontier orbital energies, and lipophilicity. Significantly, nine out of 11 of a group of structurally diverse CQ-resistance reversal agents mapped very well on the 3D QSAR pharmacophore model.  相似文献   

18.
为了研究黄酮类醛糖还原酶抑制剂的抑制机理, 选择了31个黄酮类化合物作为训练集, 使用Catalyst软件包构建了此类抑制剂的药效团模型. 并专门针对黄酮类化合物定制了氢键给体和受体模型, 效果优于使用Catalyst内预定义的模型. 最终的药效团模型由两个氢键给体和一个氢键受体组成, 对训练集具有较好预测能力(Correl=0.9013). 此外, 使用InsightII/Affinity对6个黄酮类化合物进行了分子对接研究. 综合药效团模型和分子对接研究的结果, 发现黄酮类化合物的抑制活性主要源于黄酮骨架上的C4’或C3’位的羟基与醛糖还原酶活性口袋中的TYR48、VAL47、GLN49和C7位的羟基与HIS110, TRP111所形成的两组氢键.  相似文献   

19.
Cyclic nucleotide phosphodiesterases (PDEs) comprise a complex group of enzymes; five major PDE families or classes with distinctive properties have been identified. Among these a great deal of interest has recently been focused on the so called cGMP-inhibited low Km cAMP phosphodiesterase (cGI PDE) or PDE III. A number of positive inotropic agents, including the well-known milrinone, display a specific inhibition of PDE III as primary mechanism of action. Recent studies have been carried out to develop a pharmacophore model of the PDE III active site. We therefore performed molecular modelling and 3D-SAR studies so as to better define structural requirements for potent and selective enzymatic inhibition. The DISCO (DIStance COmparison) strategy has been applied on a set of compounds taken from literature and a milrinone analogue previously synthesized by us, all of which are characterized by a marked inotropic effect but with varying degrees of enzyme selectivity. A common pharmacophoric model was derived, validated and considered as starting point to perform a 3D-SAR study using the GRID force field and PCA (Principal Component Analysis) with the aim of rationally designing more selective inhibitors. This paper presents the results of this theoretical approach.  相似文献   

20.
HIV-1 integrase (IN) is a retroviral enzyme that catalyses integration of the reverse-transcribed viral DNA into the host genome, which is necessary for efficient viral replication. In this study, we have performed an in silico virtual screening for the identification of potential HIV-1 IN strand transfer (ST) inhibitors. Pharmacophore modelling and atom-based 3D-QSAR studies were carried out for a series of compounds belonging to 3-Hydroxypyrimidine-2,4-diones. Based on the ligand-based pharmacophore model, we obtained a five-point pharmacophore with two hydrogen bond acceptors (A), one hydrogen bond donor (D), one hydrophobic group (H) and one aromatic ring (R) as pharmacophoric features. The pharmacophore hypothesis AADHR was used as a 3D query in a sequential virtual screening study to filter small molecule databases Maybridge, ChemBridge and Asinex. Hits matching with pharmacophore hypothesis AADHR were retrieved and passed progressively through Lipinski’s rule of five filtering, molecular docking and hierarchical clustering. The five compounds with best hits with novel and diverse chemotypes were subjected to QM/MM docking, which showed improved docking accuracy. We further performed molecular dynamics simulation and found three compounds that form stable interactions with key residues. These compounds could be used as a leads for further drug development and rational design of HIV-1 IN inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号