首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 60 毫秒
1.
Patterning is of paramount importance in many areas of modern science and technology. As a good candidate for novel nanoscale optoelectronics and miniaturized molecule sensors, vertically aligned silicon nanowire (SiNW) with controllable location and orientation is highly desirable. In this study, we developed an effective procedure for the fabrication of vertically aligned SiNW arrays with micro-sized features by using single-step photolithography and silver nanoparticle-induced chemical etching at room temperature. We demonstrated that the vertically aligned SiNW arrays can be used as a platform for label-free DNA detection using surface-enhanced Raman spectroscopy (SERS), where the inherent “fingerprint” SERS spectra allows for the differentiation of closely related biospecies. Since the SiNW array patterns could be modified by simply varying the mask used in the photolithographic processing, it is expected that the methodology can be used to fabricate label-free DNA microarrays and may be applicable to tissue engineering, which aims to create living tissue substitutes from cells seeded onto 3D scaffolds.
Figure 1
Schematic illustration of fabrication procedures of SiNWs patterns  相似文献   

2.
3.
We report on a microfluidic platform that integrates a winding microdroplet chip and a surface-enhanced Raman scattering (SERS) detection system for trace determination of crystal violet (CV). Colloidal silver was applied to generate SERS. Compared to the continuous flow microfluidic system, the microdroplet based detection described here effectively eliminates any memory effects. Effects of flow pattern, droplet size, surfactant, and position of detection were optimized. Under optimal conditions, there is a linear correlation between signal and the concentration of CV in the 10 nM to 800 nM range, with a correlation coefficient (R2) of 0.9967. The limit of detection in water is 3.6 nM.
Graph
A winding microdroplet chip based on SERS detection was developed for trace levels of crystal violet. Under optimal conditions,there is a good linear correlation in the 10 nM to 800 nM range with LOD is 3.6 nM.  相似文献   

4.
Microextraction by packed sorbents (MEPS) combined with Surface-enhanced Raman spectroscopy (SERS) was investigated, and applied to the determination of musk ketone (MK) in river water samples. The full MEPS–SERS method includes analyte enrichment by MEPS preconcentration with C18 sorbent followed by SERS detection supported by silver nanoparticles. An eluent drop containing the analyte is deposited directly from the MEPS syringe on a CaF2 glass plate. When the drop has dried, a specific volume of silver nanoparticles solution is added on it before each SERS measurement. Several experimental variables were studied in depth; under the optimum experimental conditions MK can be extracted from a 500 μL sample with recoveries in the range 47–63 %. The limit of detection was 0.02 mg L?1 and the relative standard deviation 15.2 % (n?=?4). Although not investigated in this work, the proposed method might be suitable for in-situ monitoring, because of the portability of the Raman spectrometer used.
Figure
Experimental scheme of the MEPS-SERS method proposed for the determination of musk ketone in river water  相似文献   

5.
We have synthesized silver nanoparticles (AgNPs) decorated with α-cyclodextrin (CD) by using the traditional silver mirror reaction in the presence of CD. The CD-AgNPs were used as substrate in surface-enhanced Raman spectroscopy (SERS) for determining melamine. The intensity of the Raman band of melamine at 704 cm?1 was used to determine melamine in milk and milk powder. The use of CD-AgNPs as the SERS substrate rather than classical silver nanoparticles makes the method more sensitive in giving an enhancement by a factor of up to?~?106 in scattering efficiency. The effects of the volume of solutions (of CD-AgNPs, NaCl, NaOH, melamine) and of mixing time were optimized. The standard addition method was employed for quantitative analysis. The correlation coefficient of the calibration plot is 0.9995, and the limit of detection is 3.0 μg L?1. The method was successfully applied to the determination of melamine in milk and milk powder, with relative standard deviations of <10 % and recoveries between 89 and 104 %.
Figure
Novel silver nanoparticles decorated with α-cyclodextrin (CD-AgNPs) were prepared. The melamine in milk and milk powder was determined using SERS and CD-AgNPs. The limit of detection is 3.0 μg L?1, and recoveries between 89 and 104 %  相似文献   

6.
We report on silver–gold core-shell nanostructures that contain Methylene Blue (MB) at the gold–silver interface. They can be used as reporter molecules in surface-enhanced Raman scattering (SERS) labels. The labels are stable and have strong SERS activity. TEM imaging revealed that these nanoparticles display bright and dark stripe structures. In addition, these labels can act as probes that can be detected and imaged through the specific Raman signatures of the reporters. We show that such SERS probes can identify cellular structures due to enhanced Raman spectra of intrinsic cellular molecules measured in the local optical fields of the core-shell nanostructures. They also provide structural information on the cellular environment as demonstrated for these nanoparticles as new SERS-active and biocompatible substrates for imaging of live cells.
Figure
The synthesis of MB embedded Ag/Au CS NPs ,and the results of these NPs were used in probing and imaging live cells as SERS labels  相似文献   

7.
We describe a novel surface-enhanced Raman scattering (SERS) tag that is based on Au/Ag core-shell nanostructures embedded with p-aminothiophenol. The Au/Ag core-shell sandwich nanostructures demonstrate bright and dark stripe structure and possess very strong SERS activity. Under optimum conditions, the maximum SERS signal was obtained with a 10?nm thick Ag nanoshell, and the enhancement factor is 3.4?×?104 at 1077?cm?1. After conjugation to the antibody of muramidase releasing protein (MRP), the Au/Ag core-shell nanostructures were successfully applied to an SERS-based detection scheme for MRP based on a sandwich type of immunoassay.
Figure
A novel SERS tag of p-Aminothiophenol (pATP) embedded Au/Ag core-shell nanostructures were prepared by adding precursor solution (AgNO3) into the original Au nanoparticles (NPs) solution. The synthesized SERS tags, as a biosensers, were further applied to detect a biomarker protein of SS2  相似文献   

8.
A novel facile method has been established for rapid on-site detection of antidiabetes chemicals used to adulterate botanical dietary supplements (BDS) for diabetes. Analytes and components of pharmaceutical matrices were separated by thin-layer chromatography (TLC) then surface-enhanced Raman spectroscopy (SERS) was used for qualitative identification of trace substances on the HPTLC plate. Optimization and standardization of the experimental conditions, for example the method used for preparation of silver colloids, the mobile phase, and the concentration of colloidal silver, resulted in a very robust and highly sensitive method which enabled successful detection when the amount of adulteration was as low as 0.001 % (w/w). The method was also highly selective, enabling successful identification of some chemicals in extremely complex herbal matrices. The established TLC–SERS method was used for analysis of real BDS used to treat diabetes, and the results obtained were verified by liquid chromatography–triple quadrupole mass spectrometry (LC–MS–MS). The study showed that TLC–SERS could be used for effective separation and detection of four chemicals used to adulterate BDS, and would have good prospects for on-site qualitative screening of BDS for adulterants.
Figure
Experimental procedure of TLC-SERS method  相似文献   

9.
We have developed a surface-enhanced Raman scattering (SERS) probe for the determination of mercury(II) using methimazole-functionalized and cyclodextrin-coated silver nanoparticles (AgNPs). These AgNPs in pH 10 solution containing sodium chloride exhibit strong SERS at 502 cm?1. Its intensity strongly decreases in the presence of Hg(II). This effect serves as the basis for a new method for the rapid, fast and selective determination of trace Hg(II). The analytical range is from 0.50 μg L?1 to 150 μg L?1, and the limit of detection is 0.10 μg L?1. The influence of 11 metal ions commonly encountered in environmental water samples was found to be quite small. The method was applied to the determination of Hg(II) in spiked water samples and gave recoveries ranging from 98.5 to 105.2 % and with relative standard deviations of <3.5 % (n?=?5). The total analysis time is <10 min for a single sample.
Figure
A high-sensitive SERS probe for the determination of Hg2+ using methimazole-functionalized cyclodextrin-protected AgNPs was designed. The limit of detection is 0.10 μg L?1.  相似文献   

10.
Surface enhanced Raman spectroscopy (SERS) has emerged as one of the most promising analytical tools in recent years. Due to advantageous features such as sensitivity, specificity, ease of operation and rapidity, SERS is particularly well suited for environmental analysis. We summarize here some considerations with respect to the detection of pollutants by SERS and provide an overview on recent achievements in the determination of organic pollutants, heavy metal ions, and pathogens. Following an introduction into the topic and considering aspects of sensitivity, selectivity, reproducibility and portability, we are summarizing applications of SERS in the detection of pollutants, with sections on organic pollutants (pesticides, PAHs and PCBs, explosives), on heavy metal ions, and on pathogens. In addition, we discuss current challenges and give an outlook on applications of SERS in environmental analysis. Contains 174 references.
Figure
The application of surface enhanced Raman spectroscopy (SERS) for the detection of environmental pollutants.  相似文献   

11.
Oligonucleotide-modified nanoparticle conjugates show highly promising potential for SERS-based DNA detection. However, it remains challenging to carry out the SERS-based DNA detection in aqueous solutions directly using oligonucleotide-modified nanoparticles, because the Raman reporters would exhibit lower signals when they are dispersed in aqueous solutions than laid on “dry” metal nanoparticles. Here, we synthesized stable oligonucleotide-modified Ag nanoprism conjugates, and performed SERS-based DNA detection in aqueous solution directly by using such conjugates in combination with Raman reporter-labeled, oligonucleotide-modified gold nanoparticles. The experimental results indicate that this SERS-based DNA detection approach exhibited a good linear correlation between SERS signal intensity and the logarithm of target DNA concentration ranging from 10?11~10?8 M. This sensitivity is comparable to those SERS-based DNA detection approaches with the “dry” process. Additionally, a similar correlation could also be observed in duplex target DNA detection by SERS hybrid probes. Our results suggest that the oligonucleotide-modified Ag nanoprisms may be developed as a powerful SERS-based DNA detection tool.
Scheme of SERS-based DNA detection in aqueous solutions. Capture DNA-modified Ag nanoprisms and Raman reporter-labeled, report DNA-modified gold nanoparticles are utilized in the detection  相似文献   

12.
A selective aptameric sequence is adsorbed on a two-dimensional nanostructured metallic platform optimized for surface-enhanced Raman spectroscopy (SERS) measurements. Using nanofabrication methods, a metallic nanostructure was prepared by electron-beam lithography onto a glass coverslip surface and embedded within a microfluidic channel made of polydimethylsiloxane, allowing one to monitor in situ SERS fingerprint spectra from the adsorbed molecules on the metallic nanostructures. The gold structure was designed so that its localized surface plasmon resonance matches the excitation wavelength used for the Raman measurement. This optofluidic device is then used to detect the presence of a toxin, namely ochratoxin-A (OTA), in a confined environment, using very small amounts of chemicals, and short data acquisition times, by taking advantage of the optical properties of a SERS platform to magnify the Raman signals of the aptameric monolayer system and avoiding chemical labeling of the aptamer or the OTA target.
Fig
Aptamer detection of OTA within a SERS/microfluidic channel  相似文献   

13.
The nicotine metabolites, cotinine and trans-3′-hydroxycotinine (3HC) are considered as superior biomarkers for identifying tobacco exposure. More importantly, the ratio of 3HC to cotinine is a good indicator to phenotype individuals for cytochrome P450 2A6 activity and to individualize pharmacotherapy for tobacco addiction. In this paper, a simple, robust and novel method based on surface-enhanced Raman spectroscopy coupled with thin-layer chromatography (TLC) was developed to directly quantify the biomarkers in human urine samples. This is the first time surface-enhanced Raman spectroscopy (SERS) was used to detect cotinine and 3HC in urine samples. The linear dynamic range for the detection of cotinine is from 40 nM to 8 μM while that of 3HC is from 1 μM to 15 μM. The detection limits are 10 nM and 0.2 μM for cotinine and 3HC, respectively. The proposed method was further validated by quantifying the concentration of both cotinine and 3HC in smokers’ urine samples. This TLC-SERS method allows the direct detection of cotinine in the urine samples of both active and passive smokers and the detection of 3HC in smokers.
Figure
Scheme of the procedure for detection of cotinine and 3HC  相似文献   

14.
We report on a facile immunoassay for porcine circovirus type 2 (PCV2) based on surface enhanced Raman scattering (SERS) using multi-branched gold nanoparticles (mb-AuNPs) as substrates. The mb-AuNPs in the immunosensor act as Raman reporters and were prepared via Tris base-induced reduction and subsequent reaction with p-mercaptobenzoic acid (pMBA). They possess good stability and high SERS activity. Subsequently, the modified mb-AuNPs were covalently conjugated to the monoclonal antibody (McAb) against the PCV2 cap protein to form SERS immuno nanoprobes. These were captured in a microtiterplate via a immunoreaction in the presence of target antigens. The effects of antibody concentration, reaction time and temperature on the sensitivity of the immunoassay were investigated. Under optimized assay conditions, the Raman signal intensity at 1,076 cm?1 increases logarithmically with the concentrations of PCV2 in the concentration ranging from 8?×?102 to 8?×?106 copies per mL. The limit of detection is 8?×?102 copies per mL. Compared to conventional detecting methods such as those based on PCR, the method presented here is rapid, facile and very sensitive.
Figure
A simple and novel approach to detect porcine circovirus type 2 using surface enhanced Raman scattering (SERS) of multi-branched gold nanoparticles is demonstrated, it has a higher sensitivity than polymerase chain reaction and ELISA.  相似文献   

15.
Silver nanoparticles (Ag NPs) modified with sodium 2-mercaptoethanesulfonate (mesna) exhibit strong surface-enhanced Raman scattering (SERS). Their specific and strong interaction with heavy metal ions led to a label-free assay for Hg(II). The covalent bond formed between mercury and sulfur is stronger than the one between silver and sulfur and thus prevents the adsorption of mesna on the surface of Ag NPs. This results in a decrease of the intensity of SERS in the presence of Hg(II) ions. The Raman peak at 795?cm?1 can be used for quantification. The effect of the concentration of mesna, the concentration of sodium chloride, incubation time and pH value on SERS were optimized. Under the optimal conditions, the intensity of SERS decreases with increasing concentration of Hg(II). The decrease is linear in the 0.01 and 2?μmol L?1 concentration range, with a correlation coefficient (R2) of 0.996 and detection limit (S/N?=?3) is 0.0024?μmol L?1. The method was successfully applied to the determination of the Hg(II) in spiked water samples.
Figure
SERS spectra of mesna-Ag NPs system in the presence of Hg2+. Concentrations of Hg2+: (1) 0.1×10-7, (2) 1×10-7, (3) 3.5×10-7, (4) 5×10-7, (5) 12×10-7, (6) 20×10-7mol L-1  相似文献   

16.
The fabrication of highly dense gold nanoparticles (NPs)-coated sulfonated polystyrene (PS) microspheres and their application in surface-enhanced Raman spectroscopy (SERS) were reported. After the preparation of PS microsphere using dispersion polymerization and subsequent sulfonation, [Ag(NH3)2]+ ions were adsorbed on the surfaces of the sulfonated PS microspheres and then reduced to silver nanoseeds for further growth of gold NPs shell by seeded growth approach. Reaction conditions such as the concentration of the growth solution and growth time were adjusted to achieve nonspherical gold NPs-coated PS microspheres with different coverage degree. The application of the as-prepared spiky gold NPs-coated PS microsphere hybrid composite in SERS was finally investigated by using 4-aminothiophenol as probe molecules. The results showed that as-prepared gold NPs-coated PS microspheres could be used as functional hybrid materials to exhibit excellent enhancement ability in SERS.
Figure
High dense gold nanoparticle shell coated sulfonated polystyrene microspheres for SERS application  相似文献   

17.
We present two kinds of electrochemical immunoassays for the tumor necrosis factor α (TNF-α) which is a protein biomarker. The antibody against TNF-α was immobilized on a graphite screen-printed electrode modified with poly-anthranilic acid (ASPE). The first is based on impedimetry (and thus label-free) and the target antigen (TNF-α) is captured by the surface of the modified electrode via an immunoreaction upon which impedance is changed. This sensing platform has a detection limit of 5.0 pg mL?1. In the second approach, the monoclonal antibodies on the modified electrode also bind to the target antigen (TNF-α), but detection is based on a sandwich immunoreaction. This is performed by first adding secondary anti-TNF-α antibodies labeled with horseradish peroxidase, and then detecting the response of the sandwich system by adding hydrogen peroxide and acetaminophen as a probe system for HRP activity. This immunosensor also has a very low detection limit (3.2 pg mL?1). The experimental conditions of both assays were studied and optimized via electrochemical impedance spectroscopy and differential pulse voltammetry. The method was then applied to the determination of TNF-α in serum samples where it displayed high sensitivity, selectivity and reproducibility.
Figure
A novel electrochemical immunosensor capable of sensitive and selective detection of tumor necrosis factor α is developed. It is based on the poly-anthranilic acid modified graphite screen-printed electrodes. Validation was made by analyzing human serum.  相似文献   

18.
A label-free nanoparticle array platform has been used to detect total peanut allergen-specific binding from whole serum of patients suffering from peanut allergy. The serum from 10 patients was screened against a four-allergen panel of cat and dog dander, dust mite and peanut allergen protein Ara h1. The IgE and IgG contributions to the total specific-binding protein load to Ara h1 were identified using two secondary IgG- and IgE-specific antibodies and were found to contribute less than 50?% of the total specific protein load. The total mass of IgE, IgE and the unresolved specific-binding protein ΔsBP for Ara h1 provides a new serum profile for high-RAST-grade patients 5 and 6 with the IgG/IgE ratio of 4?±?2 and ΔsBP/IgE ratio of 17?±?11, neither of which is protective for the small patient cohort.
Figure
Binding of the specefic IgE/IgG and unresolved material X to the sensor surface functionalized with allergen  相似文献   

19.
Herein, we demonstrate a novel silver nanocluster-based fluorescent system for the detection of nicotinamide adenine dinucleotide (NAD+), an important biological small molecule involved in a wide range of biological processes. A single-stranded dumbbell DNA probe was designed and used for the assay, which contained a nick in the stem, a poly-cytosine nucleotide loop close to 5′ end as the template for the formation of highly fluorescent silver nanoclusters (Ag NCs) and another loop close to 3′ end. Only in the presence of NAD+, the probe was linked at 5′ and 3′ ends by Escherichia coli DNA ligase, which blocked the DNA polymerase-based extension reaction, ensuring the formation of fluorescent Ag NCs. This technique provided a logarithmic linear relationship in the range of 1 pM–500 nM with a detection limit of as low as 1 pM NAD+, and exhibited high selectivity against its analogues, and was then successfully used for the detection of NAD+ level in four kinds of cell homogenates. In addition, this new approach was conducted in an isothermal and homogeneous condition without the need of any thermal cycling, washing, and separation steps, making it very simple. Overall, this label-free protocol offers a promising alternative for the detection of NAD+, taking advantage of specificity, sensitivity, cost-efficiency, and simplicity.
Figure
Ligation triggered fluorescent silver nanoclusters system for nicotinamide adenine dinucleotide sensing  相似文献   

20.
We have developed a method for in-situ construction of a porous network-like silver film on the surface of a glassy carbon electrode (GCE). It is based on a galvanic replacement reaction where a layer of copper nanoparticles is first electrodeposited as a sacrificial template. The silver film formed possesses a porous network-like structure and consists of an assembly of numerous nanoparticles with an average size of 200 nm. The electrode displays excellent electrocatalytic activity, good stability, and fast response (within 2 s) toward the reduction of nitrate at a working potential of ?0.9 V. The catalytic currents linearly increase with the nitrate concentrations in the range of 0.08–6.52 mM, with a detection limit of 3.5 μM (S/N?=?3) and a repeatability of 3.4 % (n?=?5).
Figure
A facile method was developed for in situ construction of a porous network-like Ag film on a glassy carbon electrode by a galvanic replacement reaction, where a layer of Cu nanoparticles previously electrodeposited as a sacrificial template. Thus-formed Ag film displays excellent electrocatalytic activity, good stability, and fast response (within 2 s) toward nitrate reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号