首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intracellular protein delivery is highly desirable for protein drug-based cell therapy. Established technologies suffer from poor cell-specific cytosolic protein delivery, which hampers the targeting therapy of specific cell populations. A fusogenic liposome system enables cytosolic delivery, but its ability of cell-specific and controllable delivery is quite limited. Inspired by the kinetics of viral fusion, we designed a phosphorothioated DNA coatings-modified fusogenic liposome to mimic the function of viral hemagglutinin. The macromolecular fusion machine docks cargo-loaded liposomes at the membrane of target cells, triggers membrane fusion upon pH or UV light stimuli, and facilitates cytosolic protein delivery. Our results showed efficient cell-targeted delivery of proteins of various sizes and charges, indicating the phosphorothioated DNA plug-in unit on liposomes could be a general strategy for spatial-temporally controllable protein delivery both in vitro and in vivo.  相似文献   

2.
We report a strategy to rewire cell surfaces for the dynamic control of ligand composition on cell membranes and the modulation of cell–cell interactions to generate three‐dimensional (3D) tissue structures applied to stem‐cell differentiation, cell‐surface tailoring, and tissue engineering. We tailored cell surfaces with bioorthogonal chemical groups on the basis of a liposome‐fusion and ‐delivery method to create dynamic, electroactive, and switchable cell‐tissue assemblies through chemistry involving chemoselective conjugation and release. Each step to modify the cell surface: activation, conjugation, release, and regeneration, can be monitored and modulated by noninvasive, label‐free analytical techniques. We demonstrate the utility of this methodology by the conjugation and release of small molecules to and from cell surfaces and by the generation of 3D coculture spheroids and multilayered cell tissues that can be programmed to undergo assembly and disassembly on demand.  相似文献   

3.
Nanomaterials have been widely used for applications in biomedical fields and could become indispensable in the near future. However, since it is difficult to optimize in vivo biological behavior in a 3D environment by using a single cell in vitro, there have been many failures in animal models. In vitro prediction systems using 3D human‐tissue models reflecting the 3D location of cell types may be useful to better understand the biological characteristics of nanomaterials for optimization of their function. Herein we demonstrate the potential ability of 3D engineered human‐arterial models for in vitro prediction of the in vivo behavior of nanoparticles for drug delivery. These models enabled optimization of the composition and size of the nanoparticles for targeting and treatment efficacy for atherosclerosis. In vivo experiments with atherosclerotic mice suggested excellent biological characteristics and potential treatment effects of the nanoparticles optimized in vitro.  相似文献   

4.
A liposome‐based co‐delivery system composed of a fusogenic liposome encapsulating ATP‐responsive elements with chemotherapeutics and a liposome containing ATP was developed for ATP‐mediated drug release triggered by liposomal fusion. The fusogenic liposome had a protein–DNA complex core containing an ATP‐responsive DNA scaffold with doxorubicin (DOX) and could release DOX through a conformational change from the duplex to the aptamer/ATP complex in the presence of ATP. A cell‐penetrating peptide‐modified fusogenic liposomal membrane was coated on the core, which had an acid‐triggered fusogenic potential with the ATP‐loaded liposomes or endosomes/lysosomes. Directly delivering extrinsic liposomal ATP promoted the drug release from the fusogenic liposome in the acidic intracellular compartments upon a pH‐sensitive membrane fusion and anticancer efficacy was enhanced both in vitro and in vivo.  相似文献   

5.
Currently, the clinical application of protein/peptide therapeutics is mainly limited to the modulation of diseases in extracellular spaces. Intracellular targets are hardly accessed, owing largely to the endosomal entrapment of internalized proteins/peptides. Here, we report a strategy to design and construct peptides that enable endosome-to-cytosol delivery based on an extension of the “histidine switch” principle. By substituting the Arg/Lys residues in cationic cell-penetrating peptides (CPPs) with histidine, we obtained peptides with pH-dependent membrane-perturbation activity. These peptides do not randomly penetrate cells like CPPs, but imitate the endosomal escape of CPPs following cellular uptake. Working with one such 16-residue peptide (hsLMWP) with high endosomal escape capacity, we engineered modular fusion proteins and achieved antibody-targeted delivery of diverse protein cargoes—including the pro-apoptotic protein BID (BH3-interacting domain death agonist) and Cre recombinase—into the cytosol of multiple cancer cell types. After extensive in vitro testing, an in vivo analysis with xenograft mice ultimately demonstrated that a trastuzumab-hsLMWP-BID fusion conferred strong anti-tumor efficacy without apparent side effects. Notably, our fusion protein features a modular design, allowing flexible applications for any antibody/cargo combination of choice. Therefore, the potential applications extend throughout life science and biomedicine, including gene editing, cancer treatment, and immunotherapy.  相似文献   

6.
Recently, tissue engineering and regenerative medicine studies have evaluated smart biomaterials as implantable scaffolds and their interaction with cells for biomedical applications. Porous materials have been used in tissue engineering as synthetic extracellular matrices, promoting the attachment and migration of host cells to induce the in vitro regeneration of different tissues. Biomimetic 3D scaffold systems allow control over biophysical and biochemical cues, modulating the extracellular environment through mechanical, electrical, and biochemical stimulation of cells, driving their molecular reprogramming. In this review, first we outline the main advantages of using polysaccharides as raw materials for porous scaffolds, as well as the most common processing pathways to obtain the adequate textural properties, allowing the integration and attachment of cells. The second approach focuses on the tunable characteristics of the synthetic matrix, emphasizing the effect of their mechanical properties and the modification with conducting polymers in the cell response. The use and influence of polysaccharide-based porous materials as drug delivery systems for biochemical stimulation of cells is also described. Overall, engineered biomaterials are proposed as an effective strategy to improve in vitro tissue regeneration and future research directions of modified polysaccharide-based materials in the biomedical field are suggested.  相似文献   

7.
[Image: see text] Alginate hydrogels are proving to have a wide applicability as biomaterials. They have been used as scaffolds for tissue engineering, as delivery vehicles for drugs, and as model extracellular matrices for basic biological studies. These applications require tight control of a number of material properties including mechanical stiffness, swelling, degradation, cell attachment, and binding or release of bioactive molecules. Control over these properties can be achieved by chemical or physical modifications of the polysaccharide itself or the gels formed from alginate. The utility of these modified alginate gels as biomaterials has been demonstrated in a number of in vitro and in vivo studies.Micro-CT images of bone-like constructs that result from transplantation of osteoblasts on gels that degrade over a time frame of several months leading to improved bone formation.  相似文献   

8.
三维电纺纤维在生物医学领域, 如生物传感、 药物控制释放与组织工程等方面具有良好的应用前景. 然而, 现有的电纺技术在制备结构、 孔隙率与形貌均可调节的三维定向电纺纤维方面还存在一定不足. 因此亟需开发一种新型的电纺丝工艺以制备三维定向电纺纤维. 本文通过改进传统的电纺丝工艺, 开发了一种简单高效制备三维定向聚偏氟乙烯(PVDF)的电纺丝制备技术. 所制备的三维定向纤维的形貌、 直径及纤维密度均可控. 体外细胞实验结果表明, 该类三维定向纤维具有良好的生物相容性, 能够促进细胞活性, 诱导细胞沿着纤维的方向生长. 此外, 研究结果还表明, 将该三维定向纤维作为细胞培养支架时, 细胞的增殖高于利用传统的二维纤维膜. 该制备技术将极大地拓宽三维定向纤维在三维细胞培养、 组织工程及疾病诊断等生物医学领域的应用.  相似文献   

9.
The aim of this work is to develop a novel biocompatible drug delivery carrier and tissue engineering scaffold with the ability of controlled drug release and also tissue regeneration. We have synthesized N-(2-hydroxypropyl)methacrylamide and 2-(dimethylamino)ethyl methacrylate copolymer-based hydrogels loaded with doxorubicin and tested in vitro. The manifestation of temperature sensitivity is noted with a sharp decrease or increase in hydrogel optical transparency that happens with the temperature exceeding a critical transition value. The drug release profile exhibited pH-sensitive behavior of the hydrogel. The hydrolytic degradation of gel and in vitro studies of polymer–doxorubicin conjugate and doxorubicin release from hydrogel matrix indicated that hydrogels were stable under acidic conditions (in buffers at pH 4.64 and 6.65). In both drug forms, polymer–doxorubicin conjugate and free doxorubicin could be released from the hydrogel scaffold at a rate depending directly on either the rate of drug diffusion from the hydrogel or rate of hydrogel degradation or at rate controlled by a combination of the both processes. In vitro analysis showed homogenous cell attachment and proliferation on synthesized hydrogel matrix. In vivo implantation demonstrated integration of the gel with the surrounding tissue of mice within 2 weeks and prominent neo-angiogenesis observed in the following weeks. This multifunctional hydrogels can easily overcome biological hurdles in the in vivo conditions where the pH range changes drastically and could attain higher site-specific drug delivery improving the efficacy of the treatment in various therapeutical applications, especially in cancer therapy, and could also be used as tissue engineering scaffold due to its porous interconnected and biocompatible behavior.  相似文献   

10.
超临界流体技术在制备药物输送系统中的应用   总被引:8,自引:0,他引:8  
超临界流体技术以其特有的优点成为引人注目的制备药物细微粒子及控制释放的药物输送系统的方法。本文介绍了超临界流体沉淀技术的概念、进展及相关的应用。  相似文献   

11.
Mammalian cells cultured on 2D surfaces in microfluidic channels are increasingly used in drug development and biological research applications. These systems would have more biological or clinical relevance if the cells exhibit 3D phenotypes similar to the cells in vivo. We have developed a microfluidic channel based system that allows cells to be perfusion-cultured in 3D by supporting them with adequate 3D cell-cell and cell-matrix interactions. The maximal cell-cell interaction was achieved by perfusion-seeding cells through an array of micropillars; and 3D cell-matrix interactions were achieved by a polyelectrolyte complex coacervation process to form a thin layer of matrix conforming to the 3D cell shapes. Carcinoma cell lines (HepG2, MCF7), primary differentiated (hepatocytes) and primary progenitor cells (bone marrow mesenchymal stem cells) were perfusion-cultured for 72 hours to 1 week in the microfluidic channel, which preserved their 3D cyto-architecture and cell-specific functions or differentiation competence. This transparent 3D microfluidic channel-based cell culture system also allows direct optical monitoring of cellular events for a wide range of applications.  相似文献   

12.
Ainslie KM  Desai TA 《Lab on a chip》2008,8(11):1864-1878
By adapting microfabrication techniques originally developed in the microelectronics industry novel devices for drug delivery, tissue engineering and biosensing have been engineered for in vivo use. Implant microfabrication uses a broad range of techniques including photolithography, and micromachining to create devices with features ranging from 0.1 to hundreds of microns with high aspect ratios and precise features. Microfabrication offers device feature scale that is relevant to the tissues and cells to which they are applied, as well as offering ease of en masse fabrication, small device size, and facile incorporation of integrated circuit technology. Utilizing these methods, drug delivery applications have been developed for in vivo use through many delivery routes including intravenous, oral, and transdermal. Additionally, novel microfabricated tissue engineering approaches propose therapies for the cardiovascular, orthopedic, and ocular systems, among others. Biosensing devices have been designed to detect a variety of analytes and conditions in vivo through both enzymatic-electrochemical reactions and sensor displacement through mechanical loading. Overall, the impact of microfabricated devices has had an impact over a broad range of therapies and tissues. This review addresses many of these devices and highlights their fabrication as well as discusses materials relevant to microfabrication techniques.  相似文献   

13.
Supramolecular hydrogels self-assembled by alpha-cyclodextrin and methoxypolyethylene glycol-poly(caprolactone)-(dodecanedioic acid)-poly(caprolactone)-methoxypolyethylene glycol (MPEG-PCL-MPEG) triblock polymers were prepared and characterized in vitro and in vivo. The sustained release of dextran-fluorescein isothiocyanate (FITC) from the hydrogels lasted for more than 1 month, which indicated that the hydrogels were promising for controlled drug delivery. ECV304 cells and marrow mesenchymal stem cells (MSC) were encapsulated and cultured in the hydrogels, during which the morphologies of the cells could be kept. The in vitro cell viability studies and the in vivo histological studies demonstrated that the hydrogels were non-cytotoxic and biocompatible, which indicated that the hydrogels prepared were promising candidates as injectable scaffolds for tissue engineering applications.  相似文献   

14.
The development of the three‐dimensional (3D) printer has resulted in significant advances in a number of fields, including rapid prototyping and biomedical devices. For 3D structures, the inclusion of dynamic responses to stimuli is added to develop the concept of four‐dimensional (4D) printing. Typically, 4D printing is useful for biofabrication by reproducing a stimulus‐responsive dynamic environment corresponding to physiological activities. Such a dynamic environment can be precisely designed with an understanding of shape‐morphing effects (SMEs), which enables mimicking the functionality or intricate geometry of tissues. Here, 4D bioprinting is investigated for clinical use, for example, in drug delivery systems, tissue engineering, and surgery in vivo. This review presents the concept of 4D bioprinting and smart materials defined by SMEs and stimulus‐responsive mechanisms. Then, biomedical smart materials and applications are discussed along with future perspectives.  相似文献   

15.
The interaction of mammalian cells with nanoscale topography has proven to be an important signaling modality in controlling cell function. Naturally occurring nanotopographic structures within the extracellular matrix present surrounding cells with mechanotransductive cues that influence local migration, cell polarization, and other functions. Synthetically nanofabricated topography can also influence cell morphology, alignment, adhesion, migration, proliferation, and cytoskeleton organization. We review the use of in vitro synthetic cell–nanotopography interactions to control cell behavior and influence complex cellular processes, including stem‐cell differentiation and tissue organization. Future challenges and opportunities in cell–nanotopography engineering are also discussed, including the elucidation of mechanisms and applications in tissue engineering.  相似文献   

16.
Injectable hydrogels with biodegradability have in situ formability which in vitro/in vivo allows an effective and homogeneous encapsulation of drugs/cells, and convenient in vivo surgical operation in a minimally invasive way, causing smaller scar size and less pain for patients. Therefore, they have found a variety of biomedical applications, such as drug delivery, cell encapsulation, and tissue engineering. This critical review systematically summarizes the recent progresses on biodegradable and injectable hydrogels fabricated from natural polymers (chitosan, hyaluronic acid, alginates, gelatin, heparin, chondroitin sulfate, etc.) and biodegradable synthetic polymers (polypeptides, polyesters, polyphosphazenes, etc.). The review includes the novel naturally based hydrogels with high potential for biomedical applications developed in the past five years which integrate the excellent biocompatibility of natural polymers/synthetic polypeptides with structural controllability via chemical modification. The gelation and biodegradation which are two key factors to affect the cell fate or drug delivery are highlighted. A brief outlook on the future of injectable and biodegradable hydrogels is also presented (326 references).  相似文献   

17.
Many biological processes, such as stem cell differentiation, wound healing and development, involve dynamic interactions between cells and their microenvironment. The ability to control these dynamic processes in vitro would be potentially useful to fabricate tissue engineering constructs, study biological processes, and direct stem cell differentiation. In this paper, we used a parylene-C microstencil to develop two methods of creating patterned co-cultures using either static or dynamic conditions. In the static case, embryonic stem (ES) cells were co-cultured with fibroblasts or hepatocytes by using the reversible sealing of the stencil on the substrate. In the dynamic case, ES cells were co-cultured with NIH-3T3 fibroblasts and AML12 hepatocytes sequentially by engineering the surface properties of the stencil. In this approach, the top surface of the parylene-C stencil was initially treated with hyaluronic acid (HA) to reduce non-specific cell adhesion. The stencil was then sealed on a substrate and seeded with ES cells which adhered to the underlying substrate through the holes in the membrane. To switch the surface properties of the parylene-C stencils to cell adhesive, collagen was deposited on the parylene-C surfaces. Subsequently, a second cell type was seeded on the parylene-C stencils to form a patterned co-culture. This group of cells was removed by peeling off the parylene-C stencils, which enabled the patterning of a third cell type. Although the static patterned co-culture approach has been demonstrated previously with a variety of methods, layer-by-layer modification of microfabricated parylene-C stencils enables dynamic patterning of multiple cell types in sequence. Thus, this method is a promising approach to engineering the complexity of cell-cell interactions in tissue culture in a spatially and temporally regulated manner.  相似文献   

18.
Microscale hydrogels of controlled sizes and shapes are useful for cell-based screening, in vitro diagnostics, tissue engineering, and drug delivery. However, the rapid cross-linking of many chemically and pH cross-linkable hydrogel materials prevents the application of existing micromolding techniques. In this work we present a method for fabricating micromolded calcium alginate and chitosan structures through controlled release of the gelling agent from a hydrogel mold. Replica molding was employed to generate patterned membranes, whereas microtransfer molding was used to produce microparticles of controlled shapes. To explore the viability of this technique for producing complex tissue engineering micro-architectures, this approach was used to generate cell-laden size- and shape-controlled 3D microgels as well as composite hydrogels with well-defined spatially segregated regions. In addition, shape-controlled microstructures that can exhibit differential release properties were loaded with macromolecules to verify the potential of this approach for drug delivery applications.  相似文献   

19.
Patterning of cells is critical to the formation and function of the normal organ, and it appears to be dependent upon internal and external signals. Additionally, the formation of most tissues requires the interaction of several cell types. Indeed, both extracellular matrix (ECM) components and cellular components are necessary for three-dimensional (3-D) tissue formation in vitro. Using 3-D cultures we demonstrate that ECM arranged in an aligned fashion is necessary for the rod-shaped phenotype of the myocyte, and once this pattern is established, the myocytes were responsible for the alignment of any subsequent cell layers. This is analogous to the in vivo pattern that is observed, where there appears to be minimal ECM signaling, rather formation of multicellular patterns is dependent upon cell-cell interactions. Our 3-D culture of myocytes and fibroblasts is significant in that it models in vivo organization of cardiac tissue and can be used to investigate interactions between fibroblasts and myocytes. Furthermore, we used rotational cultures to examine cellular interactions. Using these systems, we demonstrate that specific connexins and cadherins are critical for cell-cell interactions. The data presented here document the feasibility of using these systems to investigate cellular interactions during normal growth and injury.  相似文献   

20.
The development of new methods for fabricating thin films that provide precise control of the three-dimensional topography and cell adhesion could lead to significant advances in the fields of tissue engineering and biosensors. This Communication describes the successful attachment and spreading of primary hepatocytes on polyelectrolyte multilayer (PEM) films without the use of adhesive proteins such as collagen or fibronectin. We demonstrate that the attachment and spreading of primary hepatocytes can be controlled using this layer-by-layer deposition of ionic polymers. In our study, we used synthetic polymers, namely poly(diallyldimethylammonium chloride) (PDAC) and sulfonated poly(styrene) (SPS) as the polycation and polyanion, respectively, to build the multilayers. Primary hepatocytes attached and spread preferentially on SPS surfaces over PDAC surfaces. SPS patterns were formed on PEM surfaces, either by microcontact printing of SPS onto PDAC surfaces or vice versa, to obtain patterns of primary hepatocytes. PEM is a useful technique for fabricating controlled co-cultures with specified cell-cell and cell-surface interactions on a protein-free environment, thus providing flexibility in designing cell-specific surfaces for tissue engineering applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号