首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Monodispersed colloidal copper oxide nanoparticles were synthesized by water-in-oil microemulsion using CuCl 2·H2O and NaOH.The effect on CuO particle size was studied by varying the water-to-surfactant molar ratio,precursor concentration and molar ratio of NaOH to CuCl2.The morphology,size and size distribution of the particles were studied by transmission electron microscopy and dynamic light scattering.Dispersion destabilization of the colloidal copper oxide nanoparticles was detected by a Turbiscan apparatus.CuO/γ-Al2O3 catalysts were prepared by dispersing highly stable CuO nanoparticles on γ-alumina by mechanical stirring.The catalysts were analyzed by scanning electron microscopy,transmission electron microscopy,X-ray photoelectron,and X-ray diffraction,which confirmed the uniform dispersion of CuO on the support.The reduction of the nitro aromatic compounds,4-nitrophenol,3-nitrophenol,and 2-nitrophenol,were studied.The CuO/γ-Al2O3 catalysts were active for the reduction of these nitro aromatic compounds.  相似文献   

2.
Nanocrystalline cadmium doped tin oxide (SnO2) powders of about 2.5–4.5 nm in size have been synthesized by using different solvents via sol–gel method. The obtained samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), Energy dispersive X-ray analysis (EDX), Transmission electron spectroscopy (TEM), UV-Vis absorption and Photoluminescence (PL) spectroscopy. The PL emission spectra revealed that the band centered at 452 nm might be related with oxygen vacancies. A spherical, small rod and slice like morphologies of the prepared Cd-SnO2 nanoparticles were observed in the SEM and TEM studies. The presence of Cd modifies the structural, morphological and optical properties of the tin oxide nanoparticles.  相似文献   

3.
SnO2 纳米棒的氧化还原特性   总被引:2,自引:0,他引:2  
 利用室温固相反应在 NaCl-KCl 熔盐介质中, 通过焙烧含 SnO2 纳米颗粒前驱体合成了 SnO2 纳米棒, 并采用 X 射线衍射、扫描电镜、透射电镜、选区电子衍射和 X 射线光电子能谱对 SnO2 纳米棒进行了表征. 结果表明, SnO2 纳米棒是表面光滑、结晶完整的金红石结构单晶体, 直径为 10~20 nm, 长度为几百纳米到几个微米. 程序升温还原结果表明, SnO2 纳米棒具有较好的氧化还原性能和催化活性. 探讨了 SnO2 纳米棒的氧化还原机理.  相似文献   

4.
Tin oxide (SnO2) nanoparticles were synthesized by the reaction of SnCl4·5H2O in methanol, ethanol and water via sol–gel method. The samples were characterized by X-ray diffraction (XRD), Fourier transform infrared, Scanning electron microscopy and Transmission electron microscopy. The optical properties of the as-prepared samples were investigated. The XRD analysis showed well crystallized tetragonal SnO2 can be obtained and the crystal sizes were 3.9, 4.5 and 5 nm for the sample calcined at 400 °C for 2 h. It was found that solvents played important roles in the particle size effect of nanocrystalline SnO2.  相似文献   

5.
With a view to energetic and (opto)electronic applications, tin (IV) oxide (SnO2) nanoparticles have been successfully prepared at the nanoscale by a templating approach based on the use of zinc (II) oxide (ZnO) as template. The procedure consisted in preparing a mixture of tin precursor and template, subsequently calcined at 650 °C under air to lead to the formation of a SnO2/ZnO composite material. Finally, the material was washed with an alkali solution to remove the template. The template/tin precursor mass ratio was varied in order to tailor the tin (IV) oxide material, especially with a view to main particle size. The resulting SnO2 nanomaterials were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, nitrogen adsorption and electron microscopy. The tin (IV) oxide nanomaterial exhibited enhanced textural and physical surface properties (particle size, surface area, pore size) correlated to an increasing template/tin precursor mass ratio. For instance, from optimized experimental conditions, the specific surface area and pore volume were heightened twofold, reaching values of 49 m2/g and 0.32 cm3/g, respectively.  相似文献   

6.
Ag2S nanoparticles in hyperbranched polyurethane matrix were prepared through the in situ reaction with thioacetamide as the sulfur source at room temperature. Transmission electron microscopic analysis revealed a uniform spherical shape for Ag2S nanoparticles, with an average size of about 4-10 nm and a narrow size distribution. X-ray powder diffraction and UV-vis spectroscopy were also used to characterize the obtained nanoparticles  相似文献   

7.
In this work, zinc oxide/tin oxide (ZnO/SnO2) heterostructured nanomaterials were synthesized by hydrothermal method. Transmission electron microscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction measurements revealed that the product was composed of ZnO nanowires and SnO2 nanobranches. The novel ZnO/SnO2 heterostructured nanocrystals were for the first time used as a supporting matrix to explore a novel immobilization and biosensing platform of redox proteins. UV–visible absorption investigation indicated that hemoglobin (Hb) intercalated well in the ZnO/SnO2 heterostructured nanocrystals retained its native structure. Comparative experiments have confirmed that the ZnO/SnO2-based biosensor not only had enhanced direct electron transfer capacity but also displayed excellent electrocatalytic properties such as higher sensitivity and wider linear range to the detection of hydrogen peroxide in comparison with the ZnO- and SnO2-based biosensors.  相似文献   

8.
Super paramagnetic ZnFe2O4 nanoparticles were prepared by a surfactant assisted (ethylamine) hydrothermal method along with heat treatment. The nanoparticles were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, high resolution scanning electron microscopy, Transmission electron microscopy, vibrating sample magnetometer and diffuse reflectance spectra technique. From the analyses, influence of calcination temperature on the structural, vibrational, morphological, magnetic and optical properties of ZnFe2O4 nanoparticles were investigated. The ZnFe2O4 nanoparticles with an average particle size of 17 nm showed high photocatalytic activity in the degradation of methylene blue (90 %). This work demonstrates that ZnFe2O4 can be used as a potential monocomponent in visible-light photocatalysis for the degradation of organic pollutants. Furthermore, the products were super paramagnetic and could be conveniently separated within 15 min and recycled by using simple magnet, which is very beneficial for the degradation of organic pollutants.  相似文献   

9.
纯二氧化钛介孔分子筛的合成与表征   总被引:10,自引:0,他引:10  
分别用不同链长的烷基磷酸酯和脂肪胺两类不同表面活性剂为模板剂合成了纯二氧化钛介孔分子筛(Ti-TMS1,Ti-TMS2),并用溶剂法代替高温焙烧法成功地脱除了模板剂。用 XRD、TEM等测试手段对这类材料的结构进行了表征,研究了反应条件对所制备样品的结构的影响。结果表明:得到的纯二氧化钛介孔分子筛为较规则的六角堆积排列,孔径为2.7~4.4 nm, 且其纳米孔径大小可以通过改变烷基磷酸酯模板剂的烷基链长而调节。此外还发现,采用的烷基磷酸酯模板剂的烷基链越长,制得的二氧化钛介孔分子筛结构及晶型的完整性越好。进一步的研究表明,模板剂脱除之后,Ti-TMS2结构的晶体完整性和稳定性明显不如Ti-TMS1的好,且Ti-TMS1的介孔结构优于Ti-TMS2的介孔结构。  相似文献   

10.
Polyaniline(PANI)/Tin oxide (SnO2) hybrid nanocomposite with a diameter 20–30 nm was prepared by co-precipitation process of SnO2 through in situ chemical polymerization of aniline using ammonium persulphate as an oxidizing agent. The resulting nanocomposite material was characterized by different techniques, such as X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), Fourier Transform Infrared spectroscopy (FT-IR) and Ultraviolet–Visible spectroscopy (UV–Vis), which offered the information about the chemical structure of polymer, whereas electron microscopy images provided information regarding the morphology of the nanocomposite materials and the distribution of the metal particles in the nanocomposite material. SEM observation showed that the prepared SnO2 nanoparticles were uniformly dispersed and highly stabilized throughout the macromolecular chain that formed a uniform metal-polymer nanocomposite material. UV–Vis absorption spectra of PANI/SnO2 nanocomposites were studied to explore the optical behavior after doping of nanoparticles into PANI matrix. The incorporation of SnO2 nanoparticles gives rise to the red shift of π–π1 transition of polyaniline. Thermal stability of PANI and PANI/SnO2 nanocomposite was investigated by thermogravimetric analysis (TGA). PANI/SnO2 nanocomposite observed maximum conductivity (6.4 × 10?3 scm?1) was found 9 wt% loading of PANI in SnO2.  相似文献   

11.
Tin oxide (SnO2) nanoparticles were synthesized by modified thermal decomposition process. Taguchi analysis was used and three important synthetic factors, molar concentration ratio of [NaNO3]/[SnCl4], temperature and time of calcinations, which affect the size of SnO2 particles, were studied. The optimal conditions were determined using Taguchi robust design method and nano-sized SnO2 particles (~2 nm) were obtained. Nanoparticles were characterized by X-ray diffraction, transmission electron microscopy and UV–visible spectroscopy techniques. The results show that tin oxide nanoparticles could be one of the most active and reusable catalysts in the Knoevenagel condensation. Different active methylene group compounds and diverse range of aldehydes were chosen to react in the presence of tin oxide nanoparticles at ambient temperature at solvent-free condition (SFC) with excellent isolated yields.  相似文献   

12.
SnO2 urchin-like structures composed of nanorods with diameters of 10-15 nm and lengths of 50-70 nm have been hydrothermally synthesized via a H2O2-assisted route without any surfactant, using SnCl2 as raw material. With the addition of methenamine (HMT), SnO2 hollow microspheres with diameters of 2-3 μm and shell thickness of 60-140 nm were also prepared. The as-obtained products were examined using diverse techniques including X-ray powder diffraction (XRD), Raman spectroscopy, field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), selected-area electron diffraction (SAED), high-resolution TEM and photoluminescence spectra. The gas sensitivity experiments have demonstrated that the as-synthesized SnO2 materials exhibit good sensitivity to alcohol vapors, which may offer potential applications in gas sensors.  相似文献   

13.
A simple sol-gel process is proposed for synthesizing SnO2 nanopowders utilizing normal propanol and isopropanol mixture instead of just using normal alcohols such as ethanol, propanol or butanol for Sol preparation. No surfactant was used in this Sol preparation process. The structure of sol is studied by FT-IR-ATR technique. On altering propanol to isopropanol ratio, three different nanopowders were obtained. X-ray powder diffraction, high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction pattern (SAED) and BET techniques were used to characterize prepared powders. Results show that smaller grain size was obtained via altering alcohols ratio. In addition, Merck commercial SnO2 powder was also used as a reference material for comparing purposes; because it has nanometer scale (ca. 60 nm). HRTEM images show that obtained nanopowders were polycrystalline and their average diameters fall into the range of 6–80 nm. Finally, the effect of alkoxide ligand size through sol-gel synthesis on product particle size is discussed.   相似文献   

14.
Pure tin dioxide (SnO2) nanoparticles were synthesized via thermolysis of tin phthalate and tin oxalate in the presence of oleic acid (OA) as solvent. Oleic acid (OA) was employed as an organic solvent, which can be applied to control particle growth and to stabilize the particles. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and photoluminescence (PL) spectroscopy. The orthorhombic phase SnO2 nanoparticles with average size about 12 nm were synthesized through thermolysis of tin phthalate in the presence of oleic acid.  相似文献   

15.
Monodisperse colloidal silver nanospheres were synthesized by the reaction of silver nitrate, hydroxylammonium hydrosulphate (NH2OH)2 · H2SO4 and sodium hydroxide in the presence of gelatin as stabilizer. Colloidal nanospheres were characterized by UV-vis absorption spectroscopy, transmission electron microscopy, X-ray diffraction and dynamic light scattering. X-ray diffraction data confirmed that the silver nanospheres were crystalline with face-centered-cubic structure. Transmission electron microscopy analysis revealed the formation of homogeneously distributed silver nanoparticles of spherical morphology and size of the nanoparticles was in the range of 0.7–5.2 nm. Silver nanospheres were stable for more than two months when stored at ambient temperature. Size and size distribution were studied by varying pH, reaction temperature, silver ion concentration in feed solution, concentration of reducing agent and concentration of the stabilizing agent. Catalytic activity of silver nanospheres was tested for the reduction reaction of nitro compounds in sodium borohydride solution. Monodisperse silver nanospheres showed excellent catalytic activity towards the reduction of aromatic nitro compounds. The reduction rate of aromatic nitro compounds had been observed to follow the sequence 4-nitrophenol > 2-nitrophenol > 3-nitrophenol.  相似文献   

16.
《Mendeleev Communications》2021,31(6):884-886
Sn–O nanoparticles were prepared by levitation-jet aerosol synthesis and found to exhibit ferromagnetic behavior. X-ray powder diffraction analysis and 119Sn Mössbauer spectroscopy confirmed these nanoparticles consist of β-Sn, SnO and SnO2 phases. The maximum specific magnetization was observed for nanoparticles containing the SnO/SnO2 interface.  相似文献   

17.
Visible light active Ag doped SnO2 nanoparticles modified with curcumin (Cur–Ag–SnO2) have been prepared by a combined precipitation and chemical impregnation route. The optical properties, phase structures and morphologies of the as-prepared nanoparticles were characterized using UV–visible diffuse reflectance spectra (UV–vis-DRS), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The surface area was measured by Brunauer. Emmett. Teller (B.E.T) analysis. Compared to bare SnO2, the surface modified photocatalysts (Ag–SnO2 and Cur–Ag–SnO2) showed a red shift in the visible region. The photocatalytic activity was monitored via the degradation of rose bengal (RB) dye and the results revealed that Cur–Ag–SnO2 shows better photocatalytic activity than that of Ag–SnO2 and SnO2. The superior photocatalytic activity of Cur–Ag–SnO2 could be attributed to the effective electron-hole separation by surface modification. The effect of photocatalyst concentration, initial dye concentration and electron scavenger on the photocatalytic activity was examined in detail. Furthermore, the antifungal activity of the photocatalysts and the reusability of Cur–Ag–SnO2 were tested.  相似文献   

18.
Polyethylene glycol–polyvinyl alcohol (PEG–PVA) blend is a multifunctional material and controlling its properties is important for various medical and industrial uses. In this paper, we report the influence of carboxymethyl cellulose (CMC) and doping with tin oxide (SnO2) nanoparticles (NPs) on the structural and optical properties of PEG–PVA. The prepared samples were investigated by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) and UV–Vis-NIR spectroscopies. SnO2 NPs of rutile structure, average crystallite size of ~30.2 nm and optical band gap (Eg) of 3.68 eV were prepared by a simple sol–gel process. CMC addition enhances the crystallinity of PEG–PVA that then gradually reduced by increasing SnO2 doping ratio. The optical transmittance of PEG–PVA increased from 77 to 90% after mixing with CMC and then decreased to 64% with increasing SnO2 content to 1.5%. Also, the Eg of PEG–PVA increased from 5.20 to 5.28 eV and then decreased to 4.88 eV due to CMC addition and SnO2 incorporation, respectively. The refractive index, the dispersion parameters and the optical conductivity of PEG–PVA, CMC/PEG–PVA and of its nanocomposite films are discussed. The correlation between the structural modifications and the resultant optical properties are reported.  相似文献   

19.
Al2O3/SnO2 co-nanoparticles were prepared with a modified sol-gel technique followed by a thermal treatment process. With these co-nanoparticles the grafted collagen-Al2O3/SnO2 nanocomposites were obtained using a supersonic dispersion method. X-ray diffraction, FT-IR analysis, transmission electron microscopy, TGA/DTA and infrared emissivity test were performed to characterize the resulting nanoparticles and nanocomposites, respectively. The Al2O3/SnO2 co-nanoparticles showed a narrow distribution of size between 20-40 nm and could be uniformly absorbed on the tri-helix scaffolds of the grafted collagen without any aggregation. The nanocomposites possessed better thermal stability and substantially lower infrared emissivity than the grafted collagen and Al2O3/SnO2 co-nanoparticles with an increase of degradation temperature from 39 to 210 ℃ and a decrease of infrared emissivity from 0.850 of the grafted collagen and 0.708 of the Al2O3/SnO2 co-nanoparticles to 0.424, which provided a potential application of the nanocomposites to areas such as photoelectronics.  相似文献   

20.
Spherical and rod mesoporous silica nanoparticles with hexagonal mesostructure were prepared using the modified Stöber method. The morphology, size and internal pore structure can be controlled by simple changing of surfactant concentration and water:ethanol molar ratio. Monodispersed spheroid MCM-41 was obtained at 40 °C under basic conditions using cetyltrimethylammonium bromide (C16TAB) as template. Obtained materials were characterized by X-ray diffraction (XRD), nitrogen physisorption (BET), transmission electron microscopy (TEM) and scanning electronic microscopy (SEM). The results reveal that the pore volume and surface area increase when the amount of C16TAB increases whereas the pore diameter and particle size decrease. However, the use of ethanol as cosolvent led to an increase in the particles’ size. Moreover, the addition of a 3-aminopropyltriethoxysilane greatly influenced the final particle shape. The material was effectively used for the removal of two fluorescent dyes (Hoechst 33342 and rhodamine 6g) from aqueous solution. Adsorption isotherm models, Langmuir, Freundlich and Temkin were used to simulate the equilibrium data. The Langmuir model was found to fit the experimental data better than others models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号