首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
A new sensor was fabricated by MIP synthesized on the surface of magnetic nickel(II) oxide (NiO) nanoparticles which based on the oxidation current change of H2O2. Chlortoluron was selected as template which can be detected indirectly by the decrease of the H2O2 oxidation current on the NiO nanoparticle‐modified GCE caused by the blocking access after rebinding. A high sensitivity was obtained because of the high catalytic effect of NiO nanoparticles on H2O2 oxidation. Chlortoluron was determined from 1.0×10?8/L to 1.0×10?4 mol/L, with a detection limit of 2.4×10?9 mol/L. The proposed method combines the high sensitivity of the catalytic effect and the high selectivity of the MIP technique. Water samples were assayed using the MIP sensor, and recoveries of 96.9 % to 104.7 % were obtained.  相似文献   

2.
The effect of addition of chromium and nickel oxides on the physicochemical properties and performance of V2O5/ZrO2 catalysts was studied for the oxidative dehydrogenation of propane. Addition of chromium oxide increased, whereas addition of nickel oxide lowered the activity. Selectivity for propene was lower for the doped catalysts. The selectivity was lowered by higher total acidity as well as the higher concentration of stronger acid sites in doped catalysts.  相似文献   

3.
Indirect electrochemical oxidation of aliphatic alcohols (butanol, hexanol, nonanol, decanol) to the corresponding carboxylic acids by active oxygen forms (AOFs) generated in situ in electrochemical cells from O2, H2O2, H2O is carried out in aqueous electrolyte using anodes of lead dioxide, a nickel oxide electrode, and boron-doped diamond electrode (BDDE). It is found that selectivity of the process of indirect electrosynthesis of carboxylic acids depends on the chemical nature of the anode material and structure of the initial alcohol and is determined by the conditions of AOF generation. Coupled electrosynthesis with simultaneous in situ generation of AOFs on the cathode and anode occurs more effectively with formation of the corresponding carboxylic acids.  相似文献   

4.
The oxidation behavior of nickel in Li+K carbonate melt is followed by measuring the open-circuit potential and by electrochemical impedance spectroscopy under an O2+CO2 gas mixture in the ratio 90/10 at a total pressure of 1 atm at 650 °C. X-ray diffraction (XRD) and energy-dispersive spectroscopy are employed for qualitative and quantitative analyses of the different compounds involved during the oxidation of nickel. Atomic force microscopy is used for both imaging the evolution of the oxide layer and determining its surface roughness. The in situ oxidation process of nickel demonstrates three stages: rapid formation of a compact surface oxide (first stage), thicker oxide layer (second stage), and a porous oxide structure (third stage). The lithiation reaction has been identified to occur during the second stage. Formation of an intermediate and unstable compound, namely NiCO3, has been confirmed by XRD. Electronic Publication  相似文献   

5.
Platinum-modified titanium (IV) oxide (Pt-TiO2) was used to photocatalytically oxidize aqueous ammonia selectively to nitrogen gas. The photocatalyst was solvent deposited on acrylic (PMMA) supports for use in simple distributive reactors. Pt was photodeposited on the titania surface within each reactor with concentrations ranging from 0.4% (w/w) to 5.1% (w/w) Pt. The oxidation state of the deposited Pt was subsequently modified using reduced phosphotungstic acid. Time-dependent kinetic studies were used to demonstrate the effect of oxidation state on the photocatalytic activity of the Pt-TiO2. It was determined that treatment with reduced phosphotungstic acid enhanced the reaction rate and selectivity to nitrogen gas of the Pt-TiO2 photocatalysts. Most significantly, treatment of Pt-TiO2 with reduced phosphotungstic acid shifts the optimum Pt concentration to higher Pt loadings. The reactor containing 3.2% (w/w) post-treated Pt demonstrated the most favorable combination of NH3 degradation rate and selectivity to N2, resulting in the removal of 28.34% total nitrogen from 1.7 L of a 45.5 ppm NH3-N solution within 72 h.  相似文献   

6.
The mechanochemical treatment of a V2O5/MoO3 oxide mixture (V/Mo = 70/30 at %) was performed in planetary and vibratory mills under varying treatment times and media. The resulting samples were characterized using XRD analysis, micro-Raman spectroscopy, and XPS; their specific surface areas and catalytic activities in n-butane and benzene oxidation reactions were determined. It was found that the treatment of the oxide mixture in water resulted in chaotic degradation of the parent oxides, a decrease in crystallite sizes, and an increase in the specific surface area at a sufficiently uniform oxide distribution over the sample. The treatment in ethanol was accompanied by an anisotropic deformation of the V2O5 crystal by layer sliding in parallel to the vanadyl plane (010) and a chaotic degradation of MoO3 crystals. This process was accompanied by the partial nonuniform supporting of vanadium oxide crystals onto the surface of molybdenum oxide to increase the V/Mo ratio on the sample surface. In this case, the particle size of oxides decreased and the specific surface areas of samples increased. It was found that the treatment of the oxide mixture in air (dry treatment) resulted in the most significant decrease in the sizes of V2O5 and MoO3 crystals and a growth in the specific surface area. The amorphization of the parent oxides and the formation of MoV2O8 were observed as the treatment time was increased; in this case, an excess of amorphous vanadium oxide was supported onto the surface of this compound. It was found that, in all types of mechanochemical treatment, the binding energies of the core electrons of vanadium and molybdenum remained almost unchanged to indicate the constancy of the oxidation states of these elements. Mechanochemical treatment resulted in an increase in the activity of the samples in n-butane and benzene oxidation reactions and in an increase in the selectivity of maleic anhydride formation. In this case, an increase in the specific catalytic activity of the samples correlated with a decrease in the crystallite size of vanadium oxide, whereas selectivity correlated with an increase in the relative concentration of the V2O5 plane (010). In these reactions, samples after dry treatment exhibited a maximum activity, which can be related to the formation of MoV2O8.  相似文献   

7.
The properties of the catalysts for partial oxidation of o-xylene depend on the structure of the supported vanadium sites. The structure itself is strongly dependent on the calcination temperature of the catalyst at which thermal deposition of the metal oxide on the oxide support takes place. We have investigated the effect of calcination temperature on the activity and selectivity of industrial V2O5-TiO2 (anatase) supported catalysts designed for partial oxidation of o-xylene in their application to methanol oxidation.This revised version was published online in December 2005 with corrections to the Cover Date.  相似文献   

8.
Graphene oxide (GO) with different oxidation degrees were synthesized by harsh oxidation of graphite using the improved Hummers method. The GO/polyimide (PI) mixed matrix membrane was successfully fabricated by in situ polymerization of PI monomers (3,3′,4,4′‐biphenyltetracarboxylic dianhydride and 4,4′‐diaminodiphenyl ether) with GO. The structure of GO was characterized by Fourier transform infrared, transmission electron microscopy, atomic force microscopy, X‐ray diffraction, and thermal gravimetric analysis–differential thermal analysis. The performance of different GO/PI mixed matrix membranes was evaluated by permeation experiments of CO2/N2 gas mixture (volume ratio, 1:9). Results showed that more polar functional groups were introduced to GO with the increase in oxidation degree of GO in the preparation process, producing fewer layers and more translucent structures. GO with higher oxidation degree has significant effect on its dispersion in the N,N‐dimethylacetamide solvent and polymer matrix materials. The permeability of GO/PI hybrid membranes for CO2 and N2 increased. The CO2/N2 permeation selectivity of membranes exhibited a trend of initial increase, followed by a decrease, with the increase in oxidation degree, when the same amount of GO was added. For GO with the same oxidation degree, the permeability and permeation selectivity of hybrid membrane initially increased, and then decreased with the addition content of GO. In the case of hybrid membrane containing 1 wt% monolayer GO, the maximum permeability and permeation selectivity of hybrid membranes for CO2 were 14.3 and 4.2 times more than that of PI membrane without GO, respectively. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
The reduction of chromium, nickel, and manganese oxides by hydrogen, CO, CH4, and model syngas (mixtures of CO + H2 or H2 + CO + CO2) and oxidation by water vapor has been studied from the thermodynamic and chemical equilibrium point of view. Attention was concentrated not only on the convenient conditions for reduction of the relevant oxides to metals or lower oxides at temperatures in the range 400–1000 K, but also on the possible formation of soot, carbides, and carbonates as precursors for the carbon monoxide and carbon dioxide formation in the steam oxidation step. Reduction of very stable Cr2O3 to metallic Cr by hydrogen or CO at temperatures of 400–1000 K is thermodynamically excluded. Reduction of nickel oxide (NiO) and manganese oxide (Mn3O4) by hydrogen or CO at such temperatures is feasible. The oxidation of MnO and Ni by steam and simultaneous production of hydrogen at temperatures between 400 and 1000 K is a difficult step from the thermodynamics viewpoint. Assuming the Ni—NiO system, the formation of nickel aluminum spinel could be used to increase the equilibrium hydrogen yield, thus, enabling the hydrogen production via looping redox process. The equilibrium hydrogen yield under the conditions of steam oxidation of the Ni—NiO system is, however, substantially lower than that for the Fe—Fe3O4 system. The system comprising nickel ferrite seems to be unsuitable for cyclic redox processes. Under strongly reducing conditions, at high CO concentrations/partial pressures, formation of nickel carbide (Ni3C) is thermodynamically favored. Pressurized conditions during the reduction step with CO/CO2 containing gases enhance the formation of soot and carbon-containing compounds such as carbides and/or carbonates.  相似文献   

10.
In this paper the activity, selectivity and mainly stability of nickel catalysts in the oxyreforming reaction are analyzed. The catalysts were prepared employing different precursors (nickel nitrate and nickel acetylacetonate) on α-Al2O3 and α-Al2O3 modified by a layer of aluminium oxide. The catalytic sample obtained from nickel acetylacetonate on the modified support showed the best stability.  相似文献   

11.
Nickel nanoparticles/TiO2 nanotubes/Ti electrodes were prepared by galvanic deposition of nickel nanoparticles on the TiO2 nanotubes layer on titanium substrates. Titanium oxide nanotubes were fabricated by anodizing titanium foil in a DMSO fluoride‐containing electrolyte. The morphology and surface characteristics of titanium dioxide nanotubes and Ni/TiO2/Ti electrodes were investigated using scanning electron microscopy and energy‐dispersive X‐ray spectroscopy, respectively. The results indicated that nickel nanoparticles were homogeneously deposited on the surface of TiO2 nanotubes. The electrocatalytic behaviour of nickel nanoparticles/TiO2/Ti electrodes for the methanol electrooxidation was studied by electrochemical impedance spectroscopy, cyclic voltammetry, differential pulse voltammetry and chronoamperometry methods. The results showed that Ni/TiO2/Ti electrodes exhibit a considerably higher electrocatalytic activity toward the oxidation of methanol.  相似文献   

12.
The catalytic activity of the two-component catalytic system based on nickel bis(enaminoacetonate) (enamac) and 18-crown-6 (18C6) macrocyclic polyether is studied in ethylbenzene oxidation by molecular oxygen. The {Ni(enamac)2 + 18-crown-6} system is a more active catalyst of ethylbenzene oxidation into -phenylethyl hydroperoxide compared to Ni(enamac)2 and the {Ni(acac)2 + 18-crown-6} system. The formation of Ni(enamac)2–18-crown-6 complex is confirmed both kinetically and spectroscopically. It is suggested that a rise in the oxidation selectivity is due to Ni(enamac)2 transformation activated by 18-crown-6. The order of oxidation product formation at different oxidation stages is determined. The activity of catalysts in the elementary steps of the chain process is discussed.  相似文献   

13.
Keggin型钼钒磷杂多酸催化剂上丙烷选择氧化性能的研究   总被引:6,自引:1,他引:5  
李秀凯  雷宇  江桥  赵静  季伟捷  张志炳  陈懿 《化学学报》2005,63(12):1049-1054
系统研究了不同数目V5+取代的钼钒磷杂多酸H3+nPMo12-nVnO40 (n=0~4)催化剂上丙烷选择氧化反应性能. 通过BET, IR, TPR, 紫外-可见光谱等表征手段对催化剂的理化性质进行了考察, 并对催化剂的结构-性能关系进行了初步关联. 在杂多酸的一级结构中, V5+对Mo6+的取代不仅改变了杂多阴离子金属-氧桥的键强以及晶格氧的插入能力, 而且也相应地调变了样品的酸量. 催化剂活性随V5+取代数量的递增而增强; 适宜数量的V5+取代提高了含氧酸产物的选择性, 而过量的V5+取代则导致部分氧化产物的深度氧化. 考察了在Keggin型杂多酸二级结构上引入钒物种的影响, 也即将钒物种(VO)2+作为抗衡离子取代部分质子以调变催化剂的结构与性质. 实验表明, 处于一级结构和二级结构[(VO)2+抗衡离子]中的V在反应中均可离析出少量V2O5物种. 适宜量的(VO)2+物种以及离析出来的少量V2O5物种可能均对催化剂的性能有贡献. 显然, 钒在不同位置的价态变化以及形态的不同, 会导致催化性能的相应改变.  相似文献   

14.
采用等体积浸渍法和共沉淀法制备了Ni催化剂,在固定床反应器上考察了Ni负载量、焙烧温度、反应温度等因素对乙二醇低温重整制氢反应活性和选择性的影响。应用X射线衍射、氮物理吸附、H2程序升温还原等技术对负载型Ni催化剂进行了表征。结果表明,共沉淀法制备的Ni/CeO2催化剂具有较小的NiO颗粒与CeO2载体颗粒粒径,催化活性较高。添加少量氧化钴到Ni/CeO2催化剂中可使H2收率达72.6%,EG转化率达93.1%。在CeO2中添加Al2O3能提高负载Ni催化剂的活性,乙二醇转化率达94.0%,H2收率达67.0%;但添加SiO2则使其活性明显变差。  相似文献   

15.
A new approach to the preparation of systems that exhibit catalytic activity in the oxidative coupling of methane (OCM) is considered. With the use of ferrospheres separated from power-generation ashes from different sources as an example, it was demonstrated that OCM catalysts can be prepared by the crystallization/solidification of oxide melts with the formation of microspherical particles. The dependence of activity and selectivity for the oxidative reforming of methane on the ferrospheres containing from 36.2 to 92.5 wt % Fe2O3 into the products of deep oxidation and OCM was studied. It was found that deep oxidation reactions on ferrospheres with Fe2O3 contents higher than 85% were suppressed, and the main reaction path of CH4 conversion was its oxidative coupling with the formation of C2 products (with selectivity to 60% at 750°C); moreover, the selectivity for C2 formation in this region was proportional to the concentration of Fe2O3. Phases responsible for the catalytic conversion of methane into CO x and OCM products were considered, and it was shown that the catalytic activity and selectivity of the oxidative transformation of CH4 on ferrospheres is determined by the position of the point that corresponds to their composition on a phase diagram of CaO-Fe2O3-SiO2.  相似文献   

16.
The XPS (X-ray photoelectron spectroscopy) study of nickel oxide nanolayers obtained by magnetron sputtering of the metal and its subsequent oxidation in air at different temperatures (400°C and 1000°C) was performed. Silicon(100) was used as a substrate. Surface of the initial Ni/Si structure was shown to contain not only Ni metal, but also the NiO oxide. Annealing at 400°C results in a complete oxidation of the metal film. At a high-temperature annealing (1000°C), nickel interacts both with oxygen and silicon substrate to form NiSi silicide and a composite Ni-Si-O phase in transition layer. Electronconductivity of NiO films is determined by intercrystallite barriers. Activation energies of film electroconductivity in model gases (O2, Ar, H2) were found.  相似文献   

17.
The catalytic partial oxidation of methane was studied over single channels of monolith catalysts Pt/PrCeZrO/α-Al2O3 and Pt/GdCeZrO/α-Al2O3 using the temporal analysis of products (TAP) and kinetic transients. Effects of catalyst composition, oxidation state, time offset between O2 and CH4 pulses on activity, selectivity and dynamics of product formation were elucidated. Realization of the direct pyrolysis-CH4 partial oxidation route was reliably established. This route is favored by optimum lattice/surface oxygen mobility and reactivity controlled by the dopant type (Gd, Pr) and oxidation state of the complex cerium/zirconium oxide.  相似文献   

18.
It is shown for toluene oxidation with nitrous oxide that modifying HZSM-5 zeolite with zinc oxide nanoparticles considerably improves the selectivity and yield of cresols. It is found that a 2% ZnO/HZSM-5 composite catalyst also exhibits enhanced and stable activity at high temperatures. For the o-cresol isomerization reaction, this modification of HZSM-5 zeolite greatly reduces the contribution from disproportionation and cracking reactions proceeding with formation of phenol, C6–C9 aromatic hydrocarbons, and xylenols. The regularities of their formation in the presence of the studied catalysts are determined using the results from thermodynamic calculations for the equilibrium concentrations of cresol isomers.  相似文献   

19.
This study examined several candidate raw materials for use as the reactive agents in developing new oxygen carriers for chemical looping combustion. A thermogravimetric analyzer, Mettler TGA/DSC1, was used to measure oxygen capacity and relative reaction rates during oxidation and reduction cycles. The reactive gases used were 4 % hydrogen in inert gas for the reduction cycle and air for the oxidation cycle, with a nitrogen purge between reduction and oxidation cycles. Samples were typically tested for at least ten cycles to study any change in reactivity or oxygen capacity. Reaction temperatures tested ranged from 700 to 900 °C. Materials tested included an iron oxide ore, iron-based tailings from a metals extraction process, a nickel oxide supported on nickel aluminate and a copper oxide plus inert material system. The materials varied in their oxygen capacity, reactivity and the change in properties with repeat cycles. Of the samples tested, the NiO–NiAl2O4 oxygen carrier demonstrated the fastest reaction in reduction and oxidation and had stable properties over ten cycles. The iron oxide ore sample performance declined significantly with repeat cycles. The performance of the iron-based tailings declined slightly over the ten cycles. The addition of inert second phase materials to CuO improved the performance by inhibiting sintering of the oxide at the operating temperature. Although the reactivity of the tailings and iron hydroxide samples was not as high as the NiO based oxygen carrier, they are promising carrier materials due to their low cost and lower toxicity relative to nickel. Future experiments will look at CO and CH4 reduction reactions using the TG, surface characterization using SEM, XRD, and cyclic testing in a batch fluidized bed reactor.  相似文献   

20.
A platinum-lined, flowing autoclave facility was used to investigate the solubility/phase behavior of nickel oxide (NiO) in aqueous sodium phosphate solutions between 290 and 560 K. A layer of hydrous nickel oxide was concluded to exist on the nickel oxide surface below 468 K; only at higher temperatures did the anhydrous nickel oxide phase control the nickel ion solubility behavior. The measured solubility behavior was examined via a nickel(II) ion hydrolysis/complexing model and thermodynamic functions for the hydrolysis/complexing reaction equilibria were obtained from a least-squares analysis of the data. The existence of two new nickel ion complexes are reported for the first time: Ni(OH)2(HPO4)= and Ni(OH)3(H2PO4)=. The positive entropy change associated with the formation of Ni(OH)3(H2PO4)= leads to its dominance in alkaline phosphate solutions at elevated temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号