首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
二氧化钛(TiO2)作为有前景的钠离子电池负极材料, 具有良好的循环稳定性, 但由于其导电率较低, 而导致容量和倍率性能不佳限制了其实际应用. 本文采用喷雾干燥技术制备了氧化石墨烯/纳米TiO2复合材料(GO/TiO2), 通过热处理获得还原氧化石墨烯/TiO2复合材料(RGO/TiO2). 电化学测试结果表明, 还原氧化石墨烯改性的RGO/TiO2复合材料的电化学性能得到显著提升, RGO含量为4.0%(w)的RGO/TiO2复合材料在各种电流密度下的可逆容量分别为183.7 mAh·g-1 (20 mA·g-1), 153.7 mAh·g-1 (100 mA·g-1)和114.4 mAh·g-1 (600mA·g-1), 而纯TiO2的比容量仅为93.6 mAh·g-1 (20 mA·g-1), 69.6 mAh·g-1 (100 mA·g-1)和26.5 mAh·g-1 (600mA·g-1). 4.0%(w) RGO/TiO2复合材料体现了良好的循环稳定性, 在100 mA·g-1电流密度下充放电循环350个周期后, 比容量仍然保持146.7 mAh·g-1. 同等条件下, 纯TiO2电极比容量只有68.8 mAh·g-1. RGO包覆改性极大提高了TiO2在钠离子电池中的电化学嵌钠/脱钠性能. RGO包覆改性技术在改进钠离子电池材料性能中将有很好的应用前景.  相似文献   

2.
Mg2Ni0.75Cu0.25-Mg1.76体系的合成及氢化过程的初步研究   总被引:2,自引:0,他引:2  
Leilly[1]、Rudmen[2]和本研究组[3]分别对Mg2Ni-xMg,Mg2Cu-xMg体系进行了研究,巳发现Mg2Ni或Mg2Cu的存在对镁的氢化,释氢过程有催化作用,并描述了二元合金Mg2Ni,Mg2Cu对Mg的吸、放氢过程的催化氢化、脱氢模型。但有关三元合金对纯镁的吸、放氢催化性能研究,至今未见报道。我们合成了在基质镁粒表面包覆Mg2Ni0.75Cu0.25的新型材料,并研究此三元合金表面对所包覆的Mg核与H2之间反应的影响。  相似文献   

3.
张庆堂  孟艳  马啸啸 《合成化学》2018,26(11):845-849
以玉米秸秆为原料,经高温煅烧制备了玉米秸秆炭化物(C1)和ZnCl2活化玉米秸秆炭化物(C2)。利用扫描电子显微镜(SEM)、N2等温吸-脱附测试和恒电流充放电对材料进行结构、电化学性能分析。结果表明:C2具有较大的比表面积(425.06 m2·g-1)和丰富的孔道结构;电流密度为100 mA·g-1时,C1和C2的首次放电和充电比容量分别为540.2 mAh·g-1, 277.2 mAh·g-1和1 156.0 mAh·g-1, 517.6 mAh·g-1; 600 mA·g-1电流密度下循环300次后,C2的放电比容量可保持在379.8 mAh·g-1, C2具有较高的可逆比容量和良好的循环稳定性。  相似文献   

4.
首次采用溶胶-凝胶法制备Na2MnSiO4/C纳米复合正极材料. X射线衍射(XRD)和Rietveld结构精修结果表明,合成的Na2MnSiO4材料为单斜晶系、Pn空间群. 红外光谱(FTIR)结果证实材料中不含有Na2SiO3和SiO2等杂质. 电化学测试结果表明,该材料在1 mol·L-1 NaClO4/PC电解液中,电流密度为14 mA·g-1、电压范围为1.5 ~4.2 V(vs. Na+/Na)测试条件下,其首次可逆放电比容量高达113 mAh·g-1.  相似文献   

5.
采用溶剂热法制备前驱体,后经350 °C热处理,首次合成了空心结构的NiMn2O4微球以及不同含量氧化石墨烯包覆的Ni/Mn3O4/NiMn2O4@RGO复合材料. 电化学性能测试表明,复合负极材料中,含25wt%还原氧化石墨烯的材料储钠性能最佳,其在50 mA·g-1电流密度下,100次循环后放电比容量保持在187.8 mAh·g-1,且800 mA·g-1电流密度下的可逆容量高达149.9 mAh·g-1,明显优于NiMn2O4及其他石墨烯基复合材料. 研究指出,复合材料性能的提升得益于空心微球和还原的氧化石墨烯构成的特殊结构,一方面缩短了电子/离子传输距离,缓解了体积效应,另一方面高导电网络有效增强了活性物质利用率.  相似文献   

6.
应用简单的刮涂法以及真空煅烧可制备出承载在铜箔表面的二氧化钼-碳(MoO2-C)复合涂层,并对样品的形貌、成分、结构和电化学性能进行分析.结果表明,该复合涂层由单斜结构的MoO2纳米粒子和无定形碳组成.一些MoO2纳米粒子承载在碳基体表面,其尺寸为5~30nm;一些MoO2纳米粒子包覆在碳基体内部,其尺寸约为5nm. MoO2-C复合涂层为多孔结构,其孔隙尺寸为1~3nm.该复合涂层与铜箔结合紧密,界面处没有裂纹.承载在铜箔表面的MoO2-C复合涂层的比容量高、循环和倍率性能良好.在100mA·g-1电流密度下,该负极经过100次循环后的比容量为814mAh·g-1,在循环过程中没有出现明显的容量衰减,即使在5000mA·g-1的高电流密度下,其比容量仍有188mAh·g-1.  相似文献   

7.
采用简单的水解、热处理方法合成三氧化二铁(Fe2O3)负载在三维多级孔类石墨烯(3D HPG)上的复合材料. 3D HPG有效的导电网络有利于负载纳米Fe2O3,使其呈均匀分散状态,并有效增强纳米复合物的导电率,提高Fe2O3利用率,抑制纳米Fe2O3的团聚,从而制得稳定、高性能的锂离子电池负极材料. Fe2O3-3D HPG电极在50 mA·g-1电流密度下首次放电容量达1745 mAh·g-1,50周期放电容量保持于1095 mAh·g-1.  相似文献   

8.
采用改进的碳酸盐共沉淀与高温固相法相结合的方法制备出了高倍率性能的锂离子电池正极材料Li[Ni1/3Co1/3Mn1/3]O2, 通过X射线衍射(XRD)、扫描电镜(SEM)、循环伏安扫描(CV)、电化学阻抗谱(EIS)和电化学性能测试等手段对材料进行表征. 结果表明, 该方法制备的材料具有良好的α-NaFeO2型层状结构(R3m(166)), 一次粒径平均大小为157 nm, 二次颗粒成球形. 同传统碳酸盐制备得到的材料相比, 该材料具备良好的倍率性能和循环性能, 在2.7-4.3 V 电压范围内, 0.1C (1.0C=180 mA·g-1)倍率下, 首次放电比容量为156.4mAh·g-1, 库仑效率为81.9%. 在较高倍率下, 即0.5C、5.0C和20C时, 其放电比容量分别为136.9、111.3、81.3mAh·g-1. 在1C倍率下100次循环容量保持率为92.9%, 高于传统共沉淀法得到的材料(87.0%).  相似文献   

9.
采用溶剂热法一步合成纳米尺寸CoFe2O4/GNS复合材料(直径约为15 nm),其颗粒尺寸均一,且均匀分散于石墨烯表面. 电化学测试结果表明,该复合物电极具有良好的循环和倍率性能,500 mA·g-1电流密度下100周期循环比容量稳定在709 mAh·g-1, 容量保持率高达95.8%;2 A·g-1电流密度,其比容量仍高达482 mAh·g-1.  相似文献   

10.
本文以氧化石墨烯(GO)溶液为氧化剂,采用水热法使GO直接氧化Mn(Ac)2制备Mn3O4/石墨烯复合材料,并通过在制备过程中加入氨水提高了复合材料中GO的还原程度与Mn3O4颗粒的分散性. 制得的Mn3O4/石墨烯复合材料表现出优异的电化学性能. 在0.5 A·g-1的电流密度下复合材料质量比容量可达到850 mAh·g-1,0.5 A·g-1时充放电循环测试200周容量保持率为99%.  相似文献   

11.
Mg1-xTixNi(0≤x≤0.4)系列合金的合成及性能研究   总被引:11,自引:2,他引:11  
采用机械合金化法成功制备了Mg1-xTixNi(0≤x≤0.4)系列三元合金.XRD结构分析表明,不同成分的合金在相同的球磨时间下非晶化程度有所区别,并且合金的非晶化程度随着球磨时间的增加而趋于完全.少量Ti的加入使得该系列合金的电化学性能及循环稳定性都有所提高.在球磨120h的该系列合金中,Mg0.9Ti0.1Ni合金的最大初始放电容量达到356.85mA·h·g-1(100mA·g-1,-0.5Vvs.Hg/HgO),而Mg0.7Ti0.3Ni合金的循环稳定性最好.Ti的加入亦提高了合金的抗腐蚀性能,使其腐蚀电位正移.  相似文献   

12.
The structure, hydrogen-storage property and electrochemical characteristics of La(0.7)Mg(0.3)Ni(5.0-x)(Al(0.5)Mo(0.5))x (x = 0-0.8) hydrogen-storage alloys have been studied systematically. X-ray diffraction Rietveld analysis shows that all the alloys consist of an La (La,Mg)2Ni9 phase and an LaNi5 phase. The pressure-composition isotherms indicate that the hydrogen-storage capacity first increases and then decreases with increasing x, and the equilibrium pressure decreases with increasing x. Electrochemical measurements show that the maximum discharge capacity and the exchange-current density of the alloy electrodes increase as x increases from 0 to 0.6 and then decrease when x increases further from 0.6 to 0.8. Moreover, the low-temperature dischargeability of the alloy electrodes increases monotonically with increasing x in the alloys.  相似文献   

13.
采用感应熔炼方法制备了La0.8-xGd0.2MgxNi3.1Co0.3Al0.1(x=0, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4)储氢合金, 并在氩气气氛和1173 K下进行退火处理. 合金相结构分析结果表明, 镁含量(x)较低时合金以Ce2Ni7型为主相结构, A2B7型相丰度(Ce2Ni7+Gd2Co7)达到98.8%; 镁含量较高时合金相由A2B7型、 CaCu5型和PuNi3型物相构成, 随着镁含量的增加, PuNi3型和CaCu5型相组成逐渐增多, 其晶胞参数随Mg含量的增加而减小, 同时合金的吸氢平台也随之升高. 电化学测试结果表明, 随着合金中Mg含量增加, 合金电极的最大放电容量和循环稳定性均呈先增大后减小的规律, 其中x=0.15时合金电极具有最高的电化学放电容量(393 mA·h/g)和最佳的循环寿命(S100=92.82%). 合金电极的高倍率放电性能(HRD)随Mg含量的增加先减小再增大然后又减小, 适量的Mg元素改善了合金电极的动力学性能.  相似文献   

14.
使用草酸盐共沉淀法合成了5 V正极材料LiNi0.5Mn1.5O4,研究了不同温度下合成的材料结构形貌与电化学性能之间的关系。结果表明,在900℃下合成的样品电化学性能最好,可逆放电容量达到133.0 mAh?g-1,经30周循环后,容量仍然保持在132.2 mAh?g-1,容量保持率高达99.4%。使用恒电位间歇滴定法(PITT)测定了锂离子在LiNi0.5Mn1.5O4材料中的扩散系数。结果表明,在LiNi0.5Mn1.5O4材料放电过程中,在不同电位嵌锂量不同,发生反应的氧化还原电对也不同,锂离子的扩散系数在不同的电位下也会有差别,扩散系数在10e-10 cm2?s-1~10e-11 cm2?s-1范围内变  相似文献   

15.
AB5型球形合金粉的表面处理研究   总被引:2,自引:0,他引:2  
由雾化(Gas-atomization)技术制备的AB5型球形合金粉,作为镍氢电池负极材料具有很多优点:粉粒呈球状便于在多孔基片内装填;耐压耐磨性好;抗碱能力强且不易解胶.但它的电化学初活性差,难于活化.有碍电池中的应用.采用适宜的氧化剂(铜盐水溶液)处理,使球粒表面形成一个富铜、富镍亚层,显著地改善了合金粉的电化学活性.经处理的MlNi3.8CO0.5Mn0.3Al0.4球形合金粉,仅3次充放电循环其放电量便可达到240mA·h·g-1;而未经处理的同一合金粉即便经6次充放电循环其放电量也只有103mA·h·g-1.  相似文献   

16.
利用共沉淀,固相反应热结晶法,合成具有尖晶石型的复合金属氧化物Mg1.5Mn0.5Ti0.75O4。具有尖晶石型结构的物质,可以插入大量的替代离子并且改变自身锂和氧的化学计量数,与此同时,还保持了结构的稳定。这种特性能够使得它们被用于离子交换研究,用来满足提取锂的需求。通过检测该复合氧化物的饱和交换能力值,分配系数值等,从而确定出该物质具体特性。实验表明,经过酸化的Mg1.5Mn0.5Ti0.75O4,其Mg2 的抽出比率能够达到72%,Mn4 和Ti4 的溶解比率低于8.2%。实验分析得出,Li 能够从无机离子交换剂Mg1.5Mn0.5Ti0.75O4中抽出以及插入,主要是归因于离子交换机理。被酸化的样品对Li 有一个10.6mmol?g-1的离子交换能力,并且对Li 还具有记忆性的离子筛性能。  相似文献   

17.
电沉积工艺对Mg-Ni储氢合金的电化学性能的影响   总被引:3,自引:0,他引:3  
用电沉积的方法制备了镁 镍储氢合金,探讨了电沉积条件对合金的电化学性能的影响.XRD显示沉积层中含有非晶态Mg Ni相和微晶态Mg相.AAS分析表明沉积合金中Mg的摩尔分数达 8. 57%.合金的放电容量最高为 75. 547mA·h·g-1.  相似文献   

18.
A non-commercial Al4Cu0.5Mg alloy has been used for investigating the effects of the elemental Sn additions. Uniaxial die compaction response of the alloys in terms of green density was examined, and the results showed that Sn addition has no effect when compacting conducted under high pressures. In total, 93–95% green density was achieved with an applied pressure of 400 MPa. Thermal events occurring during the sintering of the emerging alloys were studied by using differential scanning calorimetry (DSC). First thermal event on the DSC analysis of the Al4Cu0.5Mg1Sn alloy is the melting of elemental Sn, whereas for Al4Cu0.5Mg alloy, it is the formation of Al–Mg liquid nearly at 450 °C. Also it is clearly seen on the DSC analysis that Sn addition led to an increase in the formation enthalpy of Al–Mg liquid phase. High Sn content and high sintering temperature (620 °C), therefore high liquid-phase content, caused decrease on the mechanical properties due to thick intergranular phases and grain coarsening. Highest transverse rupture strength and hardness values were obtained from Al4Cu0.5Mg0.1Sn alloy sintered at 600 °C and measured as 390 MPa and 73 HB, respectively.  相似文献   

19.
纳米钴基氧化物锂离子电池负极材料的研究   总被引:10,自引:0,他引:10  
黄峰  袁正勇  周运鸿  孙聚堂 《电化学》2002,8(4):397-403
采用流变相法合成Co3 O4 ,CoB1.3 6 O2 .8,CoB0 .5Al0 .1O1.5样品 ,并研究其作为锂离子电池负极材料的电化学性能 .当电池在 0 .0 1~ 3.0 0V的电压范围之间循环时 ,Li/Co3 O4 电池表现出最好的充放电性能 :循环 30周后 ,可逆比容量仍能保持为初始比容量 (931mAh/g)的 95 % .掺杂了B ,Al材料 ,其可逆比容量与未掺杂的相比明显降低 ,而且第 1周可逆容量随掺杂的B、Al量的增加而减少 .通过异位XRD方法研究了不同充放电态Co3 O4 电极材料结构的变化 .结果表明 ,Co3 O4 电极在充放电过程中与Li的反应机理不同于传统的过渡金属与Li的反应机理 ,即非Li+ 的嵌入 /脱出或合金的形成 ,而是Co3 O4 的可逆还原氧化以及Li2 O的可逆形成与分解机理  相似文献   

20.
以硝酸铟和蔗糖为原料,依次经水热反应和550℃碳化制得In_2O_3纳米材料(nano-In_2O_3);将硫渗入nanoIn_2O_3得S/In_2O_3,其结构和微观形貌经SEM,TEM和XRD表征。将S/In_2O_3,导电炭黑和聚偏氟乙烯按质量比8∶1∶1制成正极材料(1);将1涂覆于铝箔上,锂片作参比电极,1 mol·L~(-1)LiPF_6的DMF/DOL(V/V=1/1)溶液为电解液,组装成锂硫半电池。采用循环伏安法和恒电流充放电法研究了S/In_2O_3的电化学性能。结果表明:在1.95 V和2.3 V处有两个还原峰,2.5 V处有一个氧化峰。电流密度为335 m A·g~(-1),首次放电比容量为1 357m Ah·g~(-1),库伦效率为82.75%。经80次充放电后,放电比容量为537 m Ah·g~(-1)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号