首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Rapid and sensitive recognition of herbal pieces according to different concocted processing is crucial to quality control and pharmaceutical effect.Near-infrared(NIR) and mid-infrared(MIR) technology combined with supervised pattern recognition based on partial least-squares discriminant analysis (PLSDA) was attempted to classify and recognize six different concocted processing pieces of 600 Areca catechu L.samples and the influence of fingerprint information preprocessing methods on recognition performance was also investigated in this work.Recognition rates of 99.24%,100%and 99.49%for original fingerprint,multiple scatter correct(MSC) fingerprint and second derivative(2nd derivative) fingerprint of NIR spectra were achieved by PLSDA models,respectively.Meanwhile,a perfect recognition rate of 100%was obtained for the above three fingerprint models of MIR spectra.In conclusion.PLSDA can rapidly and effectively extract otherness of fingerprint information from NIR and MIR spectra to identify different concocted herbal pieces of A.catechu.  相似文献   

2.
The possibility provided by Chemometrics to extract and combine (fusion) information contained in NIR and MIR spectra in order to discriminate monovarietal extra virgin olive oils according to olive cultivar (Casaliva, Leccino, Frantoio) has been investigated.Linear discriminant analysis (LDA) was applied as a classification technique on these multivariate and non-specific spectral data both separately and jointly (NIR and MIR data together).In order to ensure a more appropriate ratio between the number of objects (samples) and number of variables (absorbance at different wavenumbers), LDA was preceded either by feature selection or variable compression. For feature selection, the SELECT algorithm was used while a wavelet transform was applied for data compression.Correct classification rates obtained by cross-validation varied between 60% and 90% depending on the followed procedure. Most accurate results were obtained using the fused NIR and MIR data, with either feature selection or data compression.Chemometrical strategies applied to fused NIR and MIR spectra represent an effective method for classification of extra virgin olive oils on the basis of the olive cultivar.  相似文献   

3.
建立了一种基于近红外光谱分析技术的香菇产地鉴别方法。利用近红外光谱仪扫描不同主产地的香菇干样,获得样品的近红外漫反射光谱。利用偏最小二乘判别分析(PLSDA)分别建立了吉林、湖北、福建3个省份栽培香菇的产地判别模型,同时使用光谱预处理和波长筛选技术对判别模型进行优化,最后使用预测样品对模型进行验证。结果表明,使用原始光谱建立的模型能够初步实现对产地的判别,使用光谱预处理技术扣除光谱中的背景信息,同时利用波长筛选技术选择特定波长对模型进行优化后,可进一步提高预测正确率。该方法为香菇产地真实性溯源提供了一种新方法,对香菇产业发展具有重要的实际意义。  相似文献   

4.
A new discrimination method, called hit quality index (HQI)-voting, that uses the HQI for discriminant analysis has been developed. HQI indicates the degree of spectral matching between two spectra as known. In this method, a library sample yielding the highest HQI value for an unknown sample was initially searched and a group containing this sample was chosen as the group for the unknown sample. When overall spectral features of two groups are quite close to each other, many library samples with similar HQI values could be available for an unknown sample. In this situation, the simultaneous consideration of multiple votes (several library samples with close HQI values) for final decision would be more robust. In order to evaluate the discrimination performance of HQI-voting, three different near-infrared (NIR) spectroscopic datasets composed of two sample groups were used: (1) domestic and imported sesame samples, (2) domestic and imported Angelica gigas samples, and (3) diesel and light gas oil (LGO) samples. For the purpose of comparison, principal component analysis–linear discriminant analysis (PCA–LDA), partial least squares–discriminant analysis (PLS–DA) as well as k-nearest neighbor (k-NN) were also performed using the same datasets and the resulting accuracies were compared. The discrimination performances improved with the use of HQI-voting in comparison with those resulted from PCA–LDA and PLS–DA. The overall results support that HQI-voting is a comparable discrimination method to that of existing factor-based multivariate methods.  相似文献   

5.
The identification of new biomarkers or a disease-related protein fingerprint for inflammatory bowel diseases (IBDs) represents a major task in the diagnosis, prognosis and pharmacological therapy. To address these issues, a simple and rapid analytical proteomic method for serum protein profiling based on selective beads-based solid-phase bulk extraction, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and chemometric data analysis was developed. Serum proteins from healthy subjects (22) and patients with Crohn's disease (15) and ulcerative colitis (26) were selectively extracted according to reversed-phase (C18), strong anion-exchange (SAX) and metal ion affinity (IDA-Cu(II)) principles. This approach allowed enrichment of serum proteins/peptides due to the high interaction surface between analytes and the solid phase and high recovery due to the elution step performed directly on the MALDI-target plate. The MALDI-TOF MS serum protein profiles were acquired and, after a data pre-processing step, analyzed by linear discriminant analysis (LDA), a chemometric classification technique, in order to classify serum samples among healthy subjects and patients with inflammatory bowel diseases (IBDs). Since the high number of variables in the MALDI spectra (more than 16000 m/z values) prevents the use of LDA, the variables were reduced to 10-20 by features selection, thus allowing the evaluation of a pattern of m/z values with high discriminant power. Serum protein profiles obtained by reversed-phase extraction and the selection of 20 m/z values gave the best overall prediction ability (96.9%). The recognition of these m/z values may allow the identification of protein biomarkers involved in IBDs.  相似文献   

6.
The complexity of metabolic profiles makes chemometric tools indispensable for extracting the most significant information. Partial least‐squares discriminant analysis (PLS‐DA) acts as one of the most effective strategies for data analysis in metabonomics. However, its actual efficacy in metabonomics is often weakened by the high similarity of metabolic profiles, which contain excessive variables. To rectify this situation, particle swarm optimization (PSO) was introduced to improve PLS‐DA by simultaneously selecting the optimal sample and variable subsets, the appropriate variable weights, and the best number of latent variables (SVWL) in PLS‐DA, forming a new algorithm named PSO‐SVWL‐PLSDA. Combined with 1H nuclear magnetic resonance‐based metabonomics, PSO‐SVWL‐PLSDA was applied to recognize the patients with lung cancer from the healthy controls. PLS‐DA was also investigated as a comparison. Relatively to the recognition rates of 86% and 65%, which were yielded by PLS‐DA, respectively, for the training and test sets, those of 98.3% and 90% were offered by PSO‐SVWL‐PLSDA. Moreover, several most discriminative metabolites were identified by PSO‐SVWL‐PLSDA to aid the diagnosis of lung cancer, including lactate, glucose (α‐glucose and β‐glucose), threonine, valine, taurine, trimethylamine, glutamine, glycoprotein, proline, and lipid. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Visible (Vis) and near-infrared reflectance (NIR) spectroscopy combined with chemometrics was explored as a tool to trace muscles from autochthonous and crossbreed pigs from Uruguay. Muscles were sourced from two breeds, namely, the Pampa-Rocha (PR) and the Pampa-Rocha x Duroc (PRxD) crossbreed. Minced muscles were scanned in the Vis and NIR regions (400–2,500 nm) in a monochromator instrument in reflectance. Principal component analysis (PCA), discriminant partial least square regression (DPLS), linear discriminant analysis (LDA) based on PCA scores and soft independent modelling of class analogy (SIMCA) were used to identify the origin of the muscles based on Vis and NIR data. Full cross validation was used as validation method when classification models were developed. DPLS correctly classified 87% of PR and 78% of PRxD muscle samples. LDA calibration models correctly classified 87 and 67% of muscles as PR and PRxD, respectively. SIMCA correctly classified 100% of PR muscles. The results demonstrated the usefulness of Vis and NIR spectra combined with chemometrics as rapid method for authentication and identification of muscles according to the breed of pig.  相似文献   

8.
Ramadan Z  Jacobs D  Grigorov M  Kochhar S 《Talanta》2006,68(5):1683-1691
The aim of this study was to evaluate evolutionary variable selection methods in improving the classification of 1H nuclear magnetic resonance (NMR) metabonomic profiles, and to identify the metabolites that are responsible for the classification. Human plasma, urine, and saliva from a group of 150 healthy male and female subjects were subjected to 1H NMR-based metabonomic analysis. The 1H NMR spectra were analyzed using two pattern recognition methods, principal component analysis (PCA) and partial least square discriminant analysis (PLS-DA), to identify metabolites responsible for gender differences. The use of genetic algorithms (GA) for variable selection methods was found to enhance the classification performance of the PLS-DA models. The loading plots obtained by PCA and PLS-DA were compared and various metabolites were identified that are responsible for the observed separations. These results demonstrated that our approach is capable of identifying the metabolites that are important for the discrimination of classes of individuals of similar physiological conditions.  相似文献   

9.
10.
Szczurek A  Maciejewska M 《Talanta》2004,64(3):609-617
Three volatile organic compounds (VOCs): benzene, toluene and xylene were measured with an array of six Taguchi gas sensors in the air with variable humidity content. The recognition of single compounds was performed, based on measurement results. The principal component analysis (PCA) pointed at humidity as the main classification factor in the measurement data set. The linear discriminant analysis (LDA) was applied to overcome this drawback and enforce classification with respect to benzene, toluene or xylene. It was shown that discriminant function analysis (DFA), which is an LDA method allowed for 100% success rate in test samples recognition of benzene. It did not allow for accurate recognition of test samples of toluene or xylene. Following, the non-linear classifier, radial basis function neural network (RBFNN) was applied. A specific configuration of input ‘s was found, which provided for successful recognition of each single compound: benzene, toluene or xylene in air with variable humidity content.  相似文献   

11.
Chen Y  Xie MY  Yan Y  Zhu SB  Nie SP  Li C  Wang YX  Gong XF 《Analytica chimica acta》2008,618(2):121-130
A rapid and nondestructive near infrared (NIR) method combined with chemometrics was used to discriminate Ganoderma lucidum according to cultivation area. Raw, first, and second derivative NIR spectra were compared to develop a robust classification rule. The chemical properties of G. lucidum samples were also investigated to find out the difference between samples from six varied origins. It could be found that the amount of polysaccharides and triterpenoid saponins in G. lucidum samples was considerably different based on cultivation area. These differences make NIR spectroscopic method viable. Principal component analysis (PCA), discriminant partial least-squares (DPLS) and discriminant analysis (DA) were applied to classify the geographical origins of those samples. The results showed that excellent classification could be obtained after optimizing spectral pre-treatment. For the discriminating of samples from three different provinces, DPLS provided 100% correct classifications. Moreover, for samples from six different locations, the correct classifications of the calibration as well as the validation data set were 96.6% using the DA method after the SNV first derivative spectral pre-treatment. Overall, NIR diffuse reflectance spectroscopy using pattern recognition was shown to have significant potential as a rapid and accurate method for the identification of herbal medicines.  相似文献   

12.
The diagnostic ability of optical spectroscopy techniques, including near-infrared (NIR) Raman spectroscopy, NIR autofluorescence spectroscopy and the composite Raman and NIR autofluorescence spectroscopy, for in vivo detection of malignant tumors was evaluated in this study. A murine tumor model, in which BALB/c mice were implanted with Meth-A fibrosarcoma cells into the subcutaneous region of the lower back, was used for this purpose. A rapid-acquisition dispersive-type NIR Raman system was employed for tissue Raman and NIR autofluorescence spectroscopic measurements at 785-nm laser excitation. High-quality in vivo NIR Raman spectra associated with an autofluorescence background from mouse skin and tumor tissue were acquired in 5 s. Multivariate statistical techniques, including principal component analysis (PCA) and linear discriminant analysis (LDA), were used to develop diagnostic algorithms for differentiating tumors from normal tissue based on their spectral features. Spectral classification of tumor tissue was tested using a leave-one-out, cross-validation method, and the receiver operating characteristic (ROC) curves were used to further evaluate the performance of diagnostic algorithms derived. Thirty-two in vivo Raman, NIR fluorescence and composite Raman and NIR fluorescence spectra were analyzed (16 normal, 16 tumors). Classification results obtained from cross-validation of the LDA model based on the three spectral data sets showed diagnostic sensitivities of 81.3%, 93.8% and 93.8%; specificities of 100%, 87.5% and 100%; and overall diagnostic accuracies of 90.6%, 90.6% and 96.9% respectively, for tumor identification. ROC curves showed that the most effective diagnostic algorithms were from the composite Raman and NIR autofluorescence techniques.  相似文献   

13.
In the present study, boosting has been combined with partial least‐squares discriminant analysis (PLS‐DA) to develop a new pattern recognition method called boosting partial least‐squares discriminant analysis (BPLS‐DA). BPLS‐DA is implemented by firstly constructing a series of PLS‐DA models on the various weighted versions of the original calibration set and then combining the predictions from the constructed PLS‐DA models to obtain the integrative results by weighted majority vote. Coupled with near infrared (NIR) spectroscopy, BPLS‐DA has been applied to discriminate different kinds of tea varieties. As comparisons to BPLS‐DA, the conventional principal component analysis, linear discriminant analysis (LDA), and PLS‐DA have also been investigated. Experimental results have shown that the inter‐variety difference can be accurately and rapidly distinguished via NIR spectroscopy coupled with BPLS‐DA. Moreover, the introduction of boosting drastically enhances the performance of an individual PLS‐DA, and BPLS‐DA is a well‐performed pattern recognition technique superior to LDA. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
In tobacco industry of China, tobacco leaves are classified and managed in terms of their cultivation areas and plant parts of tobacco-stalks. However, sometimes intentionally or involuntary mislabeling cultivation areas, blending tobacco plant parts would occur into tobacco market. The error will affect the style and quality of cigarettes. In the present work, more than 1000 Chinese flue-cured tobacco leaf samples, which have 12 genotypes and cultivated from 5 to 10 regions of China in 2003 and 2004, have been discriminated by means of an improved and simplified KNN classification algorithm (IS-KNN) based on near infrared (NIR) spectra. An original method of optimizing number of significant principal components (PCs) based on analysis of error and cross-validation was advanced. Compared with conventional pattern recognition methods KNN, NN, LDA and PLS-DA, IS-KNN exhibits good adaptability in discrimination of complicated Chinese flue-cured tobaccos. The practice in this work shows that optimized number of PCs and performance of classification models are closely relative to complicated extent of samples but not to number of categories or samples. The results demonstrated the usefulness of NIR spectra combined with chemometrics as an objective and rapid method for the authentication and identification of tobacco leaves or other kinds of powder samples.  相似文献   

15.
该文基于近红外漫反射光谱分析技术对食品包装材料聚乙烯、聚丙烯进行定性判别试验研究,选取不同波段范围、采用不同光谱预处理方法,使用主成分分析法(Principal component analysis,PCA)结合SIMCA、贝叶斯判别、K-近邻3种模式识别方法建立定性预测模型,并根据正确识别率比较了各模型预测性能。结果表明:使用SIMCA方法、贝叶斯判别、K-近邻3种方法建立的定性校正模型均在1 050~1 550 nm波长范围内效果较好;采用矢量归一化、标准正态变量变换、中心化、滑动均值滤波、多项式平滑滤波、一阶微分6种光谱预处理方法和上述3种模式识别方法对塑料样品近红外光谱进行了数据处理,其中在1 050~1 550 nm范围内,主成分因子数为3,采用原始光谱建立的K-近邻定性校正模型较优,对样品校正集和预测集的正确识别率均为100%。可为食品包装材料聚乙烯、聚丙烯的快速鉴别研究提供参考。  相似文献   

16.
Principal component analysis (PCA) is widely used as an exploratory data analysis tool in the field of vibrational spectroscopy, particularly near-infrared (NIR) spectroscopy. PCA represents original spectral data containing large variables into a few feature-containing variables, or scores. Although multiple spectral ranges can be simultaneously used for PCA, only one series of scores generated by merging the selected spectral ranges is generally used for qualitative analysis. Alternatively, the combined use of an independent series of scores generated from separate spectral ranges has not been exploited.The aim of this study is to evaluate the use of PCA to discriminate between two geographical origins of sesame samples, when scores independently generated from separate spectral ranges are optimally combined. An accurate and rapid analytical method to determine the origin is essentially required for the correct value estimation and proper production distribution. Sesame is chosen in this study because it is difficult to visually discriminate the geographical origins and its composition is highly complex. For this purpose, we collected diffuse reflectance near-infrared (NIR) spectroscopic data from geographically diverse sesame samples over a period of eight years. The discrimination error obtained by applying linear discriminant analysis (LDA) was improved when separate scores from two spectral ranges were optimally combined, compared to the discrimination errors obtained when scores from singly merged two spectral ranges were used.  相似文献   

17.
Vandenabeele P  Moens L 《The Analyst》2003,128(2):187-193
In this work indigo samples from three different sources are studied by using Raman spectroscopy: the synthetic pigment and pigments from the woad (Isatis tinctoria) and the indigo plant (Indigofera tinctoria). 21 samples were obtained from 8 suppliers; for each sample 5 Raman spectra were recorded and used for further chemometrical analysis. Principal components analysis (PCA) was performed as data reduction method before applying hierarchical cluster analysis. Linear discriminant analysis (LDA) was implemented as a non-hierarchical supervised pattern recognition method to build a classification model. In order to avoid broad-shaped interferences from the fluorescence background, the influence of 1st and 2nd derivatives on the classification was studied by using cross-validation. Although chemically identical, it is shown that Raman spectroscopy in combination with suitable chemometric methods has the potential to discriminate between synthetic and natural indigo samples.  相似文献   

18.
王国庆  邵学广 《分析化学》2005,33(2):191-194
用遗传算法(GA)与交互检验(CV)相结合建立了一种用于对近红外光谱(NIR)数据及其离散小波变换(DWT)系数进行变量筛选的方法,并应用于烟草样品中总挥发碱和总氮的同时测定。结果表明:NIR数据经DWT压缩为原始大小的3.3%时基本没有光谱信息的丢失;有效的变量筛选可以极大地减少模型中的变量个数,降低模型的复杂程度,改善预测的准确度。  相似文献   

19.
Using a series of thirteen organic materials that includes novel high-nitrogen energetic materials, conventional organic military explosives, and benign organic materials, we have demonstrated the importance of variable selection for maximizing residue discrimination with partial least squares discriminant analysis (PLS-DA). We built several PLS-DA models using different variable sets based on laser induced breakdown spectroscopy (LIBS) spectra of the organic residues on an aluminum substrate under an argon atmosphere. The model classification results for each sample are presented and the influence of the variables on these results is discussed. We found that using the whole spectra as the data input for the PLS-DA model gave the best results. However, variables due to the surrounding atmosphere and the substrate contribute to discrimination when the whole spectra are used, indicating this may not be the most robust model. Further iterative testing with additional validation data sets is necessary to determine the most robust model.  相似文献   

20.
The feasibility of utilizing an Adaboost algorithm in conjuction with near-infrared (NIR) spectroscopy to automatically distinguish cigarettes of different brands was explored. Simple linear discriminant analysis (LDA) was used as the base algorithm to train all weak classifiers in Adaboost. Both principal component analysis (PCA) and its kernel version (kernel principal component analysis, KPCA) were used for feature extraction and were also compared to each other. The influence of the training set size on the final classification model was also investigated. Using a case study, it was demonstrated that Adaboost coupled with PCA or KPCA can obviously improve the ability to discriminate between samples that cannot be separated by a single linear classifier. However, in term of the overall performance, KPCA appears preferable to PCA for feature extraction, especially when the samples used for training are relatively small. The results also indicate that more training samples should be applied, if possible, in order to fully demonstrate the superiority of Adaboost. It seems that the use of an Adaboost algorithm in conjunction with NIR spectroscopy in combination with KPCA for feature extraction comprises a promising tool for distinguishing cigarettes of different brands, especially in situations where there is an obvious overlap between the NIR spectra afforded by cigarettes of different brands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号