首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Mujahid S  Pechan T  Wang C 《Electrophoresis》2007,28(21):3998-4007
Solubilization of bacterial surface (cell wall and membrane-associated) proteins for 2-DE is challenging, particularly in the case of Gram-positive bacteria. This is primarily due to strong protein association with the cell wall peptidoglycan and protein hydrophobicity. We solubilized surface proteins for 2-DE from the Gram-positive pathogen Listeria monocytogenes using mutanolysin, which digests cell wall peptidoglycan, and one of three different mixtures of zwitterionic detergent and chaotropes: (i) CHAPS/urea, (ii) amidosulfobetaine-14 (ASB-14)/urea/thiourea (iii) N-decyl-N,N'-dimethyl-3-ammonio-1-propanesulfonate/urea/thiourea. Cell lysis with mutanolysin followed by solubilization with ASB-14/urea/thiourea gave the highest overall protein yield with the best 2-DE resolution. Protein spot identification by MALDI-TOF/TOF-MS analysis revealed 29 characterized surface proteins of L. monocytogenes, 17 of which have not previously been reported on the surface proteome map. This is the first report describing the successful solubilization and 2-DE of L. monocytogenes proteins bound to the cell surface via an LPXTG motif or by a hydrophobic tail. The increase in surface proteome coverage obtained by mutanolysin and ASB-14/urea/thiourea solubilization suggests the utility of this method for future analytical and comparative studies of surface proteins from Listeria, and possibly other Gram-positive bacteria, using 2-DE proteomic analysis. An updated 2-DE reference map of L. monocytogenes surface proteins is presented.  相似文献   

2.
Many bacterial outer membrane proteins (OMPs) are missing from two-dimensional (2-D) gel proteome maps. Recently, we developed a technique for 2-D electrophoresis (2-DE) of Escherichia coli OMPs using alkaline pH incubation for isolation of OMPs, followed by improved solubilization conditions for array by 2-DE using immobilized pH gradients. In this report, we expanded our study, examining protein components from the outer membranes of two enteric bacteria, Salmonella typhimurium and Klebsiella pneumoniae (also known as Klebsiella aerogenes), as well as the unrelated, free-living alpha-proteobacteria Caulobacter crescentus. Patterns of OMPs expression appeared remarkably conserved between members of the Enterobacteriaceae, while C. crescentus was unique, displaying a greater number of clusters of higher-molecular-weight proteins (>80 kDa). Peptide mass fingerprinting (PMF) was used for protein identification, and despite matching across-species boundaries, proved useful for first-pass protein assignment of enteric OMPs. In contrast, identification of C. crescentus OMPs was successful only when searching against its recently completed genome. For all three microorganisms examined, the majority of proteins identified on the 2-D gel appear localized to the outer membrane, a result consistent with our previous finding in Escherichia coli. In addition, we discuss some of the benefits and limitations of PMF in cross-species searching.  相似文献   

3.
The identification of specific protein markers for breast cancer would provide the basis for early diagnosis. Particularly, membrane and membrane-associated proteins are rich in targets for antibodies that may constitute suitable biomarkers of carcinogenesis. However, membrane proteins separation using 2-DE remains difficult. In this work, the breast cancer cell line MCF7 was used as source of proteins for the screening of potential cell membrane-associated antigens recognized by autoantibodies in patients with breast cancer and healthy volunteers. The protein extract obtained using trifluoroethanol (TFE) as cosolvent was compared to a total cell lysate protein extract prepared by a current technique. After 2-DE separation of the two extracts, their protein patterns clearly differed. About 63% of the proteins identified in the TFE-extract were predicted to possess at least one transmembrane domain. 2-D blots probed with sera from cancer patients or from healthy volunteers showed that, as expected, additional antigens were provided in the TFE-extract. Thus, the method described here appeared well suited for proteomic investigation of potential biomarkers undetected by current techniques.  相似文献   

4.
Membrane proteome analysis of the green-sulfur bacterium Chlorobium tepidum   总被引:2,自引:0,他引:2  
An extensive proteomic approach relies on the possibility to visualize and analyze various types of proteins, including membrane proteins, which are rarely detectable on two-dimensional electrophoresis gels. In this study, different methods were employed for the enrichment of membrane proteins from Chlorobium tepidum prior to analysis with two-dimensional electrophoresis (2-DE). Isolated membranes were solubilized with Triton X-100 and from the supernatant we identified 58 unique proteins. The use of ionic sodium dodecyl sulfate (SDS) for protein solubilization, combined with acetone precipitation, resulted in an improved 2-DE pattern and the total number of the identified proteins was increased to 117. The use of acetone for protein precipitation improved the results by extracting compounds potentially deleterious to the resolution of 2-DE. However, the additional proteins detected by the use of SDS are in the majority more difficult to solubilize than less hydrophobic proteins. Further our attempts for selective extraction of the outer membrane proteins using the acid glycine method allowed the identification of 37 proteins of which 14 were predicted to have a signal sequence indicating their localization in the periplasmic space or in the outer membrane.  相似文献   

5.
In plasma membrane proteome research, contamination of the isolated plasma membrane fraction with proteins from other organelles is still a problem. Even if highly specific isolation methods are used, such as density gradient centrifugation combined with selective extraction, contaminating proteins cannot be completely removed. To solve this problem, a protocol for the isolation of highly pure plasma membrane fractions from rat liver and two different hepatocellular carcinoma cell lines was developed. Magnetic beads with immobilized mAb's against highly expressed membrane proteins were used for specific binding of membrane vesicles and their separation from other organelles. Isolated plasma membranes were further selectively solubilized with different reagents and analyzed by use of different methods, such as Western blotting, 1- and 2-DE, and MS. Purification and further selective solubilization was validated by use of mAb's against the marker integral plasma membrane protein carcinoembryonic antigen cell adhesion molecule 1, and identification of isolated proteins by MS. The method presented here minimizes contamination with other organelles and enables further identification of membrane proteins.  相似文献   

6.
A model system for selective solubilization and fast separation of proteins from the rat liver membrane fraction and purified rat liver plasma membranes for their further proteomic analysis is presented. For selective solubilization, high-pH solutions and a concentrated urea solution, combined with different detergents, are used. After extraction, proteins are separated by anion-exchange chromatography or a combination of anion- and cation-exchange chromatography with convective interaction monolithic supports. This separation method enables fast and effective prefractionation of membrane proteins based on their hydrophobicity and charge prior to one-dimensional (1-D) and 2-D electrophoresis and mass spectrometry. By use of this sample preparation method, the less-abundant proteins can be detected and identified.  相似文献   

7.
The human milk fat globule membrane protein composition is still largely unknown, although it counts for 2-4% of the total milk protein content and contains several important biologically active components. The aim of this work was to create a two-dimensional electrophoresis (2-DE) map of the human milk fat globule membrane proteins, both integral and membrane-associated, and to identify and characterize as many protein components as possible. A new protocol for the solubilization and extraction of the human milk fat globule membrane proteins with a double extraction procedure is presented, and the results compared with the extraction methods reported in the literature. The proteins were separated, in the first dimension, by isoelectric focusing (IEF) in the pH range 3-10 on strips of 13 cm length and, in the second dimension, by Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) on 11.5% T homogeneous gels. A reproducible 2-DE map of integral and membrane-associated proteins was obtained and the first 23 spots, representing the major components, were identified by matrix assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometric analysis and/or by amino acid sequencing.  相似文献   

8.
Pre-fractionation of a complex mixture of proteins increases the resolution in analytical separations of proteins from cells, tissues or organisms. Here we demonstrate a novel method for pre-fractionation of membrane proteins by a detergent-based aqueous two-phase system. Membrane proteins are strongly under-represented in proteomic studies based on two-dimensional electrophoresis (2-DE). As a model system, we have isolated mitochondria from the yeast Saccharomyces cerevisiae. Mitochondrial proteins were fractionated in an aqueous two-phase system consisting of the polymer poly(ethylene glycol) and either of two commonly used non-ionic detergents, Triton X-114 or dodecyl maltoside (DDM). Soluble proteins partitioned mainly to the polymer phase while membrane proteins were enriched in the detergent phase, as identified from one-dimensional electrophoresis (1-DE) and/or 2-DE followed by mass spectrometric analysis. Pre-fractionation was further enhanced by addition of an anionic detergent, sodium dodecyl sulfate, or a chaotropic salt, NaClO4, and by raising the pH in the system. The two-phase system pre-fractionation was furthermore combined with an alternative two-dimensional high-resolution separation method, namely ion-exchange chromatography and 1-DE. By this approach a larger number of membrane proteins could be identified compared to separation with conventional 2-DE. Thus, pre-fractionation of complex protein mixtures using the aqueous two-phase systems developed here will help to disclose larger proportions of membrane proteins in different proteomes.  相似文献   

9.
Bovine pericardium (BP) is an important biomaterial used in the production of glutaraldehyde-fixed heart valves and tissue-engineering applications. The ability to perform proteomic analysis on BP is useful for a range of studies, including investigation of immune rejection after implantation. However, proteomic analysis of fibrous tissues such as BP is challenging due to their relative low-cellularity and abundance of extracellular matrix. A variety of methods for tissue treatment, protein extraction, and fractionation were investigated with the aim of producing high-quality 2-DE gels for both water- and lipid-soluble BP proteins. Extraction of water-soluble proteins with 3-(benzyldimethylammonio)-propanesulfonate followed by n-dodecyl beta-D-maltoside extraction and ethanol precipitation for lipid-soluble proteins provided the best combination of yield, spot number, and resolution on 2-DE gels (Protocol E2). ESI-quadrupole/ion trap or MALDI-TOF/TOF MS protein identifications were performed to confirm bovine origin and appropriate subcellular prefractionation of resolved proteins. Twenty-five unique, predominantly cytoplasmic bovine proteins were identified from the water-soluble fraction. Thirty-two unique, predominantly membrane bovine proteins were identified from the lipid-soluble fraction. These results demonstrated that the final protocol produced high-quality proteomic data from this important tissue for both cytoplasmic and membrane proteins.  相似文献   

10.
Jin Y  Manabe T 《Electrophoresis》2007,28(3):449-459
Previously, we have reported a high-efficiency method of protein extraction from CBB-stained polyacrylamide gels for molecular mass measurement with MALDI-TOF MS [1]. In the present work, the alkaline extraction method was applied to CBB-stained 2-DE gels on which human plasma proteins were separated in the absence of denaturant. In order to examine the performance of the method, ten spots with apparent molecular masses (MMapp) in the range of 65 to 1000 kDa were selected and the proteins were extracted from the gel pieces. The extracts were subjected to whole-mass measurement by MALDI-TOF MS, with and without DTT treatment. In addition, the extracts were subjected to in-solution trypsin digestion followed by MALDI-TOF MS and PMF analysis. Successful extraction of proteins from the ten spots, up to MMapp 1000 kDa, has been ascertained by the significant PMF assignment (MASCOT) with high sequence coverage of the respective proteins or polypeptides. When direct mass measurement of the extracted proteins was attempted, three spots in MMapp range 65-100 kDa provided mass peaks. Five spots in MMapp range 150-400 kDa did not give mass peaks of the intact proteins, but showed those of the constituent polypeptides after the DTT treatment. Extraction of proteins prior to trypsin digestion enabled the procedure of PMF analysis to be much simpler than the conventional in-gel digestion method, providing comparable protein scores and sequence coverage. The technique presented here suggests a new strategy for the characterization of proteins separated by nondenaturing 2-DE.  相似文献   

11.
Ruan Y  Wan M 《Electrophoresis》2007,28(18):3333-3340
The separation of integral and peripheral membrane proteins is still a challenge, although many achievements have been made in the 2-DE-based membrane proteomics. Using a human breast cancer cell line, MCF-7, we investigated the influences of Tris, reducing reagents, cup loading, and SDS on membrane protein solubilization and separation by 2-DE. The addition of Tris to the sample solution improved the solubilization of the membrane-enriched fraction, and the best-quality gel patterns were obtained at 20 mM Tris. Tributylphosphine (TBP), a reducing agent, was not optimum in the 2-DE process because it not only decreased the solubilization of hydrophobic proteins but also caused some proteins, such as hsp60, prohibitin, and actin, to be resolved to a string of spots. However, when combined with DTT, TBP could improve the resolution of 2-DE patterns. Cup loading significantly facilitated the entrance of membrane proteins into IPG strips and over 1000 protein spots with high resolution were visualized. Adopting this strategy, an ATP synthase alpha chain was resolved into two adjacent spots for the first time in 2-DE gel patterns through the adding DTT in the middle of the IEF. A high SDS concentration in the equilibration buffer enhanced the transfer and increased the staining intensity of 50% of the protein spots in the gels, but also resulted in losses of some spots.  相似文献   

12.
Due to their poor solubility during IEF membrane proteins cannot be separated and analyzed satisfactorily with classical 2-DE. A more efficient method for such hydrophobic proteins is the benzyldimethyl-n-hexadecylammonium chloride (16-BAC)/SDS-PAGE, but the corresponding protocol is intricate and time-consuming. We now developed an easy-to-handle electrophoresis method in connection with a novel device which enables reproducible separation of ionic solubilized membrane proteins using individually rehydrated plastic sheet gel strips. These strips are suitable for the first dimension in a 2-D 16-BAC/SDS system and can be handled easily; this is demonstrated by the separation of membrane proteins of human embryonic kidney (HEK293) cells.  相似文献   

13.
2-DE is one of the most powerful methods for analyzing proteins expressed in cells and tissues. Immunodetection of proteins blotted on a polymer membrane is the method of choice for detecting specific proteins in 2-D gels. To precisely locate spots of immunoreactive proteins in 2-D gels, both dye staining and immunodetection were performed on the same PVDF membrane. Prior to immunodetection, nonspecific adsorption of the antibodies to the membrane was blocked with a synthetic polymer-based reagent (N-102) after protein transfer. The protein was then stained with colloidal gold or CBB followed by protein spot identification by LC-MS. Described herein is a method for multiplex analysis of proteins transferred to a PVDF membrane. Proteins that were phosphorylated at tyrosine in the phosphoproteome of rice callus or human ovarian cancer cells were detected by immunoblotting and subsequently identified with high precision.  相似文献   

14.
液相等电聚焦结合双向凝胶电泳分离碱性蛋白   总被引:1,自引:0,他引:1  
在蛋白组学研究中, 经典的双向凝胶电泳法(2-DE)对碱性蛋白及低丰度蛋白的分离存在技术障碍, 但预分离技术的应用可弥补其缺陷. 液相等电聚焦可有效地分离富集复杂蛋白样品. 碱性胶条用于2-DE可极大地提高蛋白上样量和凝胶分辨率. 将上述两种技术相结合用于碱性蛋白质和低丰度蛋白质的分离鉴定, 可使碱端区域双向凝胶图谱质量显著提高, 蛋白点更清晰且点数增多, 质谱鉴定确信度提高, 碱性蛋白和低丰度蛋白质谱鉴定成功率提高, 对于蛋白组学研究具有一定的意义.  相似文献   

15.
Ohlmeier S  Scharf C  Hecker M 《Electrophoresis》2000,21(17):3701-3709
The genomic sequence of Bacillus subtilis, which is the best studied Gram-positive bacterium, enabled us to obtain a theoretical two-dimensional (2-D) map, demonstrating that about one-third of this proteome has a theoretical alkaline isoelectric point (pI). This represents an important part of the entire proteome, which is not detectable in conventional 2-D gels (pH range 4-7). Sequence analysis revealed that 91% of the ribosomal proteins and a high amount of theoretical membrane proteins should be localized in the alkaline pH range requiring different protein extraction procedures. In order to find the pH range which gives the best resolution results for the alkaline proteins of B. subtilis, immobilized pH gradients (IPGs) with different pH ranges (pH 6-10, 6-11, 4-12, 9-12, and 3-10) were tested and optimized for IPG 4-12. Here we present a version of a first alkaline master 2-D gel for B. subtilis, which is a further complement of the already existing master gel (pH 4-7) in the Sub2D database. Almost 150 spots could be detected and 41 proteins have already been identified.  相似文献   

16.
Manabe T  Jin Y 《Electrophoresis》2007,28(12):2065-2079
Previously, we have reported on the analysis of human plasma proteins on a nondenaturing micro-2-DE (mu2-DE) gel, using in-gel digestion followed by MALDI-MS and PMF [1]. Many of the spots on the mu2-DE gel showed apparent masses much larger than the calculated masses of their assigned polypeptides, suggesting noncovalent or covalent interactions between the polypeptides. In the present study, we aimed to further analyze the plasma protein spots on a nondenaturing mu2-DE gel, on which protein/polypeptide interactions have been suggested. The proteins in the spots were extracted under alkaline conditions and subjected to 3-D separation using SDS-PAGE in microslab gel format (muSDS gel) with or without the sample treatment of reduction-alkylation. The clear bands in each lane of the muSDS gels demonstrated the successful extraction of proteins from the relevant gel spot and visualized the relative contents of the polypeptides in the spot. Most of the bands were assigned by in-gel digestion followed by MALDI-MS and PMF (MASCOT/Swiss-Prot). The large discrepancy between the apparent mass value of a protein spot and the estimated mass values of the polypeptide bands on a nonreducing muSDS gel strongly suggested noncovalent polypeptide interactions. The differences in the polypeptide separation patterns on the muSDS gels, between with and without the treatment of reduction-alkylation, confirmed polypeptide disulfide bonding. The method employed here, aiming to integrate information on the proteins separated on nondenaturing 2-DE gels with that on the interactions between polypeptides, would help the comprehensive understanding of complex protein systems.  相似文献   

17.
A novel method of protein extraction from perennial Bupleurum root for 2-DE   总被引:1,自引:0,他引:1  
Xie H  Pan S  Liu S  Ye K  Huo K 《Electrophoresis》2007,28(5):871-875
The perennial Bupleurum root is thick and woody and contains high levels of interfering compounds. Common protein extraction methods have proved refractory towards the isolation of proteins suitable for 2-DE, due to the presence of interfering compounds. A novel method for extracting proteins suitable for 2-DE was established to overcome these problems. The main characteristic of this protocol is the partitioning of the proteins into the aqueous (fraction A-2), chloroform and isoamyl alcohol phases (A-3), and the interphase (A-1). The proteins are then extracted from each of these phases. From A-1, 85% (extracted protein against total proteins) proteins could be extracted and purified. For fraction A-2, a novel phenol extraction step is employed for the extraction of proteins. Based on the well-resolved 2-DE patterns, our protein preparation is free of interfering compounds. Using these methods (A-1, A-2, and A-3-3), a total of 3662 (1526 + 1128 + 1008) spots could be separated, and a protein yield of about 1.41 mg per 1.0 g fresh root material was obtained. To our knowledge, this is the first time that a protocol for protein extraction from perennial Bupleurum root has been reported that gives reproducible results. The protocol is expected to be applicable to other recalcitrant plant tissues as well.  相似文献   

18.
Wang X  Li X  Deng X  Han H  Shi W  Li Y 《Electrophoresis》2007,28(21):3976-3987
Protein extraction from plants like the halophyte Salicornia europaea has been problematic using standard protocols due to high concentrations of salt ions in their cells. We have developed an improved method for protein extraction from S. europaea, which allowed us to remove interfering compounds and salt ions by including the chemicals borax, polyvinylpolypyrrolidone, and phenol. The comparative study of this method with several other protocols using NaCl-treated S. europaea shoots demonstrated that this method gave the best distinction of proteins on 2-DE gels. This protocol had a wide range of applications as high yields and good distinction of 1-DE gels for proteins isolated from twelve other plants were rendered. In addition, we reported results of 2-DE using the recalcitrant tissue of the S. europaea roots. We also demonstrated that this protocol is compatible with proteomic analysis as eight specific proteins generated by this method have been identified by MS. In conclusion, our newly developed protein extraction protocol is expected to have excellent applications in proteomic studies of halophytes.  相似文献   

19.
A 2-DE system has been devised in which proteins are first separated in their native state followed by separation according to mass under denaturing conditions (Nat/SDS-PAGE). Hydrophilic properties of the gel and the presence of dihydroxybisacrylamide in the first dimension allowed a good resolution for high-molecular-weight proteins and maintained interactions. With this method 252 plasma spots have been resolved and 140 have been characterized by MS as isoforms of 60 proteins, a relevant part of which (12) were not detected by traditional 2-D gels or by other nondenaturing 2-D techniques. The list includes complement factors (C4d, C7), coagulation factors (coagulation factor II, fibrin beta), apolipoproteins (apolipoprotein B) and cell debris (vinculin, gelsolin, tropomyosin, dystrobrevin beta, fibrinectin I). Nat/SDS PAGE also allowed separation of nicked forms of albumin, Apo B100 and alpha2-macroglobulin and showed the presence of atypical albumin adducts corresponding to post-translational and oxidation products. Our system provides therefore new tools for resolving proteins, protein aggregates and complexes and amplifies the potentiality of traditional electrophoretic analysis.  相似文献   

20.
Despite the large number of papers dealing with bacterial proteomes, very few include information about proteins with alkaline pI's, because of the limits inherent in 2-DE technology. Nonetheless, analyses of in silico proteomes of many prokaryotes show a bimodal distribution of their proteins based on their pI's; the most crowded areas lying between pI 4-7 and 9-11. The aim of the present research was to set up a general, simple, and standardizable 2-DE protocol suitable for studying the alkaline proteome of Lactobacillus hilgardii, a Gram-positive bacillus isolated from wine. The method has also been tested on a Gram-negative bacterium able to degrade aromatic pollutants, Acinetobacter radioresistens S13. Optimization of the method was mainly focused on improving protein extraction and IEF (pI 6-11) separation protocols. Concerning IEF, different methods for sample loading (in-gel rehydration and cup loading), and different reducing agents (DTT and bis(2-hydroxyethyl) disulfide (HED)) were tested and compared. The proposed protocol was found to resolve efficiently alkaline proteins from both of our Lactobacillus and Acinetobacter strains, in spite of their different external layers, thus, enabling a more comprehensive study of their proteomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号