首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Manabe T  Jin Y 《Electrophoresis》2007,28(12):2065-2079
Previously, we have reported on the analysis of human plasma proteins on a nondenaturing micro-2-DE (mu2-DE) gel, using in-gel digestion followed by MALDI-MS and PMF [1]. Many of the spots on the mu2-DE gel showed apparent masses much larger than the calculated masses of their assigned polypeptides, suggesting noncovalent or covalent interactions between the polypeptides. In the present study, we aimed to further analyze the plasma protein spots on a nondenaturing mu2-DE gel, on which protein/polypeptide interactions have been suggested. The proteins in the spots were extracted under alkaline conditions and subjected to 3-D separation using SDS-PAGE in microslab gel format (muSDS gel) with or without the sample treatment of reduction-alkylation. The clear bands in each lane of the muSDS gels demonstrated the successful extraction of proteins from the relevant gel spot and visualized the relative contents of the polypeptides in the spot. Most of the bands were assigned by in-gel digestion followed by MALDI-MS and PMF (MASCOT/Swiss-Prot). The large discrepancy between the apparent mass value of a protein spot and the estimated mass values of the polypeptide bands on a nonreducing muSDS gel strongly suggested noncovalent polypeptide interactions. The differences in the polypeptide separation patterns on the muSDS gels, between with and without the treatment of reduction-alkylation, confirmed polypeptide disulfide bonding. The method employed here, aiming to integrate information on the proteins separated on nondenaturing 2-DE gels with that on the interactions between polypeptides, would help the comprehensive understanding of complex protein systems.  相似文献   

2.
Salmonella enterica serovar Gallinarum (SG) is an important pathogen that causes fowl typhoid in chickens. In order to investigate SG outer membrane proteins (OMPs) as potential vaccine candidate proteins, we established a proteomic map and database of antigenic SG‐OMPs. A total of 174 spots were detected by 2DE. Twenty‐two antigen‐reactive spots were identified as nine specific proteins using PMF. OmpA was the most abundant protein among all of the identified OMPs, and it exhibited seven protein species. We conducted Western blot analysis for the SG‐OMPs in order to determine which proteins were cross‐reactive to the serovars Salmonella Enteritidis, Salmonella Typhimurium, and SG. Our results indicated that OmpA was considered to be an antigenic cross‐reactive protein among the three serovars. This study sheds new light on our understanding of cross‐protection among Salmonella serovars.  相似文献   

3.
Characterization of the membrane proteome is particularly intriguing since a better knowledge in this field might lead to new insights into the function of different membrane systems. Despite the biological relevance of surface proteins however, their characterization still remains a challenging task. Outer membrane proteins (OMPs) of Gram-negative bacteria are key molecules that interface the cell with the environment. Hence, surface proteins of Gram-negative bacteria contain proteins that might be good targets for drugs, antimicrobials or detection systems and they may become components of effective vaccines. In this respect, Escherichia coli has been chosen as a model organism for several structural and functional studies aimed at understanding the biophysical and biochemical organization of proteins in Gram-negative cell walls. Here we present first results for the identification of bacterial surface exposed proteins in E. coli K12 based on the use of dansyl chloride labelling coupled with bidimensional tandem mass spectrometry exploiting the advantage of precursor ion/MS3 scan modes. This procedure resulted in a promising, simple, and rapid strategy for the identification of membrane proteins in E. coli as model organism, thus avoiding time-consuming procedures based on two-dimensional liquid chromatography and electrophoresis. The proteins identified could be grouped into five major families: outer membrane (29 proteins), lipoproteins (6 proteins), transmembrane (43 proteins) families.  相似文献   

4.
We have developed a matrix assisted laser desorption/ionization-time of flight (MALDI-TOF) based technique for the detection of intact proteins directly from immobilized pH gradient gels (IPGs). The use of this technique to visualize proteins from IPGs was explored in this study. Whole cell Escherichia coli extracts of various loadings were separated on IPGs. These IPGs were processed to remove contaminants and to achieve matrix/analyte cocrystallization on the surface of the gel. Mass spectra were acquired by scanning the surface of the gel and were assimilated into a "virtual" two dimensional (2-D) gel. This virtual 2-D gel is analogous to a "classical" 2-D gel, except that the molecular weight information is acquired by mass spectrometry rather than by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). This mass spectrometry (MS) based technology exemplifies a number of desirable characteristics, some of which are not attainable with classical two-dimensional electrophoresis (2-DE). These include high sensitivity, high reproducibility, and an inherently higher resolution and mass accuracy than 2-D gels. Furthermore, there is a difference in selectivity exhibited between virtual 2-D gels and classical 2-D gels, as a number of proteins are visible in the virtual gel image that are not present in the stained gels and vice versa. In this report, virtual 2-D gels will be compared to classical 2-D gels to illustrate these features.  相似文献   

5.
Membrane proteome analysis of the green-sulfur bacterium Chlorobium tepidum   总被引:2,自引:0,他引:2  
An extensive proteomic approach relies on the possibility to visualize and analyze various types of proteins, including membrane proteins, which are rarely detectable on two-dimensional electrophoresis gels. In this study, different methods were employed for the enrichment of membrane proteins from Chlorobium tepidum prior to analysis with two-dimensional electrophoresis (2-DE). Isolated membranes were solubilized with Triton X-100 and from the supernatant we identified 58 unique proteins. The use of ionic sodium dodecyl sulfate (SDS) for protein solubilization, combined with acetone precipitation, resulted in an improved 2-DE pattern and the total number of the identified proteins was increased to 117. The use of acetone for protein precipitation improved the results by extracting compounds potentially deleterious to the resolution of 2-DE. However, the additional proteins detected by the use of SDS are in the majority more difficult to solubilize than less hydrophobic proteins. Further our attempts for selective extraction of the outer membrane proteins using the acid glycine method allowed the identification of 37 proteins of which 14 were predicted to have a signal sequence indicating their localization in the periplasmic space or in the outer membrane.  相似文献   

6.
Manabe T  Jin Y 《Electrophoresis》2008,29(12):2672-2688
Previously, we reported the analysis of human plasma proteins by 2-DE under nondenaturing conditions (Type-I 2-DE) followed by the assignment of stained spots using MALDI-MS and PMF [1]. Here, we employ 2-DE conditions modified only in the second-dimensional separation; SDS was added in the gradient slab gel aiming to dissociate noncovalently bound proteins/polypeptides (Type-II 2-DE). Totally 169 CBB-stained spots on a micro-2-DE gel were numbered and subjected to polypeptide assignment using MALDI-MS-PMF. One hundred sixty spots out of the 169 provided significant match (p <0.05) with polypeptides in databases. Comparisons of the results of polypeptide assignment on the two 2-DE patterns indicated that 10 polypeptides in 20 stained spots on the Type-I 2-DE pattern [1] shifted toward low-molecular-weight positions on the Type-II 2-DE pattern, demonstrating the presence of noncovalent interactions. Seventeen polypeptides in 38 stained spots were only assigned on the Type-II 2-DE gel, which could mostly be accounted for by the disruption of noncovalent protein-protein interactions in the presence of SDS, i.e., protein/polypeptide complexes which might form smear bands on the Type-I 2-DE gel dissociate to form clear spots on the Type-II 2-DE gel. The method employed here, comparisons of nondenaturing and denaturing 2-DE maps with polypeptide assignment by MALDI-MS-PMF, would enable the simultaneous detection of multiple noncovalent interactions in complex protein/polypeptide systems.  相似文献   

7.
Manabe T  Jin Y  Tani O 《Electrophoresis》2007,28(5):843-863
Human plasma proteins were separated by 2-DE under nondenaturing conditions followed by the assignment of the CBB-stained spots using MALDI-MS and PMF, aiming to correlate the information of intact proteins with that of constituent polypeptides. A microgel system was employed to facilitate the analysis. Totally 157 spots on a nondenaturing micro-2-DE gel were numbered, the spots were excised, the proteins in the gel pieces were subjected to in-gel digestion with trypsin followed by polypeptide analysis using MALDI-MS and PMF. Two PMF algorithms, MASCOT (with Swiss-Prot database) and ProFound (with NCBInr database) were employed. A total of 153 spots out of the 157 provided significant match (p <0.05) with polypeptides in databases. Eighty spots were assigned to contain multiple (2-4) polypeptides, suggesting (i) noncovalent interaction between proteins/polypeptides, (ii) disulfide bonding of polypeptides, or (iii) overlapping of the protein locations on the gel. The results of polypeptide assignment coincided very well with the results of protein mapping previously reported, in which 33 plasma proteins were identified using blotting-immunochemical staining (Manabe, T., Takahashi, Y., Higuchi, N., Okuyama, T., Electrophoresis 1985, 6, 462-467). Further, 19 polypeptides in 25 spots were newly assigned. These results demonstrate that the techniques of MALDI-MS and PMF can be applied for analysis of proteins separated on nondenaturing 2-DE gels, providing information on their polypeptide structure. The integrated information on proteins and polypeptides would help the comprehensive understanding on the functions of complex protein systems.  相似文献   

8.
Cerebrospinal fluid (CSF) is in close proximity to the brain and changes in the protein composition of CSF may be indicative of altered brain protein expression in neurodegenerative disorders. Analysis of brain-specific proteins in CSF is complicated by the fact that most CSF proteins are derived from the plasma and tend to obscure less abundant proteins. By adopting a prefractionation step prior to two-dimensional gel electrophoresis (2-DE), less abundant proteins are enriched and can be detected in complex proteomes such as CSF. We have developed a method in which liquid-phase isoelectric focusing (IEF) is used to prefractionate individual CSF samples; selected IEF fractions are then analysed on SYPRO-Ruby-stained 2-D gels, with final protein identification by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS). To optimise the focusing of the protein spots on the 2-D gel, the ampholyte concentration in liquid-phase IEF was minimised and the focusing time in the first dimension was increased. When comparing 2-D gels from individual prefractionated and unfractionated CSF samples it is evident that individual protein spots are larger and contain more protein after prefractionation of CSF. Generally, more protein spots were also detected in the 2-D gels from prefractionated CSF compared with direct 2-DE separations of CSF. Several proteins, including cystatin C, IgM-kappa, hemopexin, acetyl-coenzyme A carboxylase-alpha, and alpha-1-acid glycoprotein, were identified in prefractionated CSF but not in unfractionated CSF. Low abundant forms of posttranslationally modified proteins, e.g. alpha-1-acid glycoprotein and alpha-2-HS glycoprotein, can be enriched, thus better resolved and detected on the 2-D gel. Liquid-phase IEF, as a prefractionation step prior to 2-DE, reduce sample complexity, facilitate detection of less abundant protein components, increases the protein loads and the protein amount in each gel spot for MALDI-MS analysis.  相似文献   

9.
Peptide mass fingerprinting (PMF) is a powerful tool for identification of proteins separated by two-dimensional electrophoresis (2-DE). With the increase in sensitivity of peptide mass determination it becomes obvious that even spots looking well separated on a 2-DE gel may consist of several proteins. As a result the number of mass peaks in PMFs increased dramatically leaving many unassigned after a first database search. A number of these are caused by experiment-specific contaminants or by neighbor spots, as well as by additional proteins or post-translational modifications. To understand the complete protein composition of a spot we suggest an iterative procedure based on large numbers of PMFs, exemplified by PMFs of 480 Helicobacter pylori protein spots. Three key iterations were applied: (1) Elimination of contaminant mass peaks determined by MS-Screener (a software developed for this purpose) followed by reanalysis; (2) neighbor spot mass peak determination by cluster analysis, elimination from the peak list and repeated search; (3) re-evaluation of contaminant peaks. The quality of the identification was improved and spots previously unidentified were assigned to proteins. Eight additional spots were identified with this procedure, increasing the total number of identified spots to 455.  相似文献   

10.
2-DE separations of protein extracts sometimes have problems with poor resolution and streaking. This problem is particularly apparent with microorganisms, most notably those with a large cell wall. Here we describe a novel, rapid protocol for the extraction of microorganisms in acidic conditions, leading to increased resolution and 2-D gel quality. The efficiency of the protocol is demonstrated with extracts of bacteria, Escherichia coli and Bacillus subtilis; fungus, Trichoderma harzianum and yeast, Saccharomyces cerevisiae. We also demonstrate using a membrane centrifugal filtration, that large acidic molecules in excess of 100 kDa, probably including cell wall material, are responsible for the separation difficulties. A range of acidic extraction conditions were investigated, and it was found that optimal extraction is achieved using an extraction solution acidified to pH 3 by 80 mM citric acid. These findings have significant implications for the proteomic study of many medically, agriculturally and environmentally significant microorganisms, as the cell walls of these organisms are often considerably more complex than many commonly studied laboratory strains.  相似文献   

11.
液相等电聚焦结合双向凝胶电泳分离碱性蛋白   总被引:1,自引:0,他引:1  
在蛋白组学研究中, 经典的双向凝胶电泳法(2-DE)对碱性蛋白及低丰度蛋白的分离存在技术障碍, 但预分离技术的应用可弥补其缺陷. 液相等电聚焦可有效地分离富集复杂蛋白样品. 碱性胶条用于2-DE可极大地提高蛋白上样量和凝胶分辨率. 将上述两种技术相结合用于碱性蛋白质和低丰度蛋白质的分离鉴定, 可使碱端区域双向凝胶图谱质量显著提高, 蛋白点更清晰且点数增多, 质谱鉴定确信度提高, 碱性蛋白和低丰度蛋白质谱鉴定成功率提高, 对于蛋白组学研究具有一定的意义.  相似文献   

12.
Proteins with molecular mass (M(r)) <20 kDa are often poorly separated in 2-D sodium dodecyl sulfate polyacrylamide gel electrophoresis. In addition, low-M(r) proteins may not be readily identified using peptide mass fingerprinting (PMF) owing to the small number of peptides generated in tryptic digestion. In this work, we used a 2-D liquid separation method based on chromatofocusing and non-porous silica reversed-phase high-performance liquid chromatography to purify proteins for matrix-assisted laser desorption/ionization time-of-flight mass spectrometric (MALDI-TOFMS) analysis and protein identification. Several proteins were identified using the PMF method where the result was supported using an accurate M(r) value obtained from electrospray ionization TOFMS. However, many proteins were not identified owing to an insufficient number of peptides observed in the MALDI-TOF experiments. The small number of peptides detected in MALDI-TOFMS can result from internal fragmentation, the few arginines in its sequence and incomplete tryptic digestion. MALDI-QTOFMS/MS can be used to identify many of these proteins. The accurate experimental M(r) and pI confirm identification and aid in identifying post-translational modifications such as truncations and acetylations. In some cases, high-quality MS/MS data obtained from the MALDI-QTOF spectrometer overcome preferential cleavages and result in protein identification.  相似文献   

13.
The identification and characterisation of Monodelphis proteins has required cross-species analysis. Protein expression was investigated in normal, nonirradiated adult fibroblasts and also in fibroblastic cells from a benign cutaneous tumour after chronic ultraviolet (UVB) exposure and a metastatic cutaneous tumour after intermittent exposure. Proteins were separated and visualised by two-dimensional gel electrophoresis (2-D PAGE) and a peptide mass fingerprint (PMF) was obtained for protein spots using matrix assisted laser desorption/ionisation-time of flight-mass spectrometry (MALDITOF-MS). Cross-species PMF database analysis facilitated the identification of 120 proteins, constituting 46.5% of the proteins analysed. The identification of two proteins was confirmed by internal amino acid sequencing using tandem MS. Differential protein expression was observed between normal fibroblasts and those in tumours chronically or intermittently exposed. A number of tropomyosin and vimentin isoforms were expressed only in cells from the metastatic tumour induced by intermittent exposure to UV radiation. These results highlight the value of cross-species PMF analysis for the rapid characterisation of proteins from a poorly defined species and also show how proteomics can be used to detect changes in protein expression in differentially treated cells.  相似文献   

14.
Ha GH  Lee SU  Kang DG  Ha NY  Kim SH  Kim J  Bae JM  Kim JW  Lee CW 《Electrophoresis》2002,23(15):2513-2524
Two-dimensional gel electrophoresis (2-DE) maps for human stomach tissue proteins have been prepared by displaying the protein components of the tissue by 2-DE and identifying them using mass spectrometry. This will enable us to present an overview of the proteins expressed in human stomach tissues and lays the basis for subsequent comparative proteome analysis studies with gastric diseases such as gastric cancer. In this study, 2-DE maps of soluble fraction proteins were prepared on two gel images with partially overlapping pH ranges of 4-7 and 6-9. On the gels covering pH 4-7 and pH 6-9, about 900 and 600 protein spots were detected by silver staining, respectively. For protein identification, proteins spots on micropreparative gels stained with colloidal Coomassie Brilliant Blue G-250 were excised, digested in-gel with trypsin, and analyzed by peptide mass fingerprinting with delayed extraction-matrix assisted laser desorption/ionization-mass spectrometry (DE-MALDI-MS). In all, 243 protein spots (168 spots in acidic map and 75 spots in basic map) corresponding to 136 different proteins were identified. Besides these principal maps, overview maps (displayed on pH 3-10 gels) for total homogenate and soluble fraction, are also presented with some identifications mapped on them. Based on the 2-DE maps presented in this study, a 2-DE database for human stomach tissue proteome has been constructed and is available at http://proteome.gsnu.ac.kr/DB/2DPAGE/Stomach/. The 2-DE maps and the database resulting from this study will serve important resources for subsequent proteomic studies for analyzing the normal protein variability in healthy tissues and specific protein variations in diseased tissues.  相似文献   

15.
Zhong H  Yun D  Zhang C  Yang P  Fan H  He F 《Electrophoresis》2008,29(11):2372-2380
In this study, ampholyte-free liquid-phase IEF (LIEF) was combined with narrow pH range 2-DE and SDS-PAGE RP-HPLC for comprehensive analysis of mouse liver proteome. Because LIEF prefractionation was able to reduce the complexity of the sample and enhance the loading capacity of IEF strips, the number of visible protein spots on subsequent 2-DE gels was significantly increased. A total of 6271 protein spots were detected after integrating five narrow pH range 2-DE gels following LIEF prefractionation into a single virtual 2-DE gel. Furthermore, the pH 3-5 LIEF fraction and the unfractionated sample were separated by pH 3-6 2-DE and identified by MALDI-TOF/TOF MS, respectively. In parallel, the pH 3-5 LIEF fraction was also analyzed by SDS-PAGE RP-HPLC MS/MS. LIEF-2-DE and LIEF-HPLC could obviously improve the separation efficiency and the confidence of protein identification, which identified a higher number of low-abundance proteins and proteins with extreme physicochemical characteristics or post-translational modifications compared to conventional 2-DE method. Furthermore, there were 207 proteins newly identified in mouse liver in comparison with previously reported large-scale datasets. It was observed that the combination of LIEF-2-DE and LIEF-HPLC was effective in promoting MS-based liver proteome profiling and could be applied on similar complex tissue samples.  相似文献   

16.
2-DE is one of the most powerful methods for analyzing proteins expressed in cells and tissues. Immunodetection of proteins blotted on a polymer membrane is the method of choice for detecting specific proteins in 2-D gels. To precisely locate spots of immunoreactive proteins in 2-D gels, both dye staining and immunodetection were performed on the same PVDF membrane. Prior to immunodetection, nonspecific adsorption of the antibodies to the membrane was blocked with a synthetic polymer-based reagent (N-102) after protein transfer. The protein was then stained with colloidal gold or CBB followed by protein spot identification by LC-MS. Described herein is a method for multiplex analysis of proteins transferred to a PVDF membrane. Proteins that were phosphorylated at tyrosine in the phosphoproteome of rice callus or human ovarian cancer cells were detected by immunoblotting and subsequently identified with high precision.  相似文献   

17.
The proteomic definition of plasma membrane proteins is an important initial step in searching for novel tumor marker proteins expressed during the different stages of cancer progression. However, due to the charge heterogeneity and poor solubility of membrane-associated proteins this subsection of the cell's proteome is often refractory to two-dimensional electrophoresis (2-DE), the current paradigm technology for studying protein expression profiles. Here, we describe a non-2-DE method for identifying membrane proteins. Proteins from an enriched membrane preparation of the human colorectal carcinoma cell line LIM1215 were initially fractionated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE, 4-20%). The unstained gel was cut into 16 x 3 mm slices, and peptide mixtures resulting from in-gel tryptic digestion of each slice were individually subjected to capillary-column reversed phase-high performance liquid chromatography (RP-HPLC) coupled with electrospray ionization-ion trap-mass spectrometry (ESI-IT-MS). Interrogation of genomic databases with the resulting collision-induced dissociation (CID) generated peptide ion fragment data was used to identify the proteins in each gel slice. Over 284 proteins (including 92 membrane proteins) were identified, including many integral membrane proteins not previously identified by 2-DE, many proteins seen at the genomic level only, as well as several proteins identified by expressed sequence tags (ESTs) only. Additionally, a number of peptides, identified by de novo MS sequence analysis, have not been described in the databases. Further, a "targeted" ion approach was used to unambiguously identify known low-abundance plasma membrane proteins, using the membrane-associated A33 antigen, a gastrointestinal-specific epithelial cell protein, as an example. Following localization of the A33 antigen in the gel by immunoblotting, ions corresponding to the theoretical A33 antigen tryptic peptide masses were selected using an "inclusion" mass list for automated sequence analysis. Six peptides corresponding to the A33 antigen, present at levels well below those accessible using the standard automated "nontargeted" approach, were identified. The membrane protein database may be accessed via the World Wide Web (WWW) at http://www.ludwig. edu.au/jpsl/jpslhome.html.  相似文献   

18.
Zhu Y  Lubman DM 《Electrophoresis》2004,25(7-8):949-958
Preparative isoelectric focusing (PIEF) is used to achieve narrow-band fractionation of proteins from whole cell lysates of Escherichia coli (E. coli). Isoelectric membranes create well-defined pH ranges that fractionate proteins by isoelectric point (pI) upon application of an electric potential. A commercial IsoPrime device (Amersham-Pharmacia BioTech) is modified for the PIEF separation to lessen run volumes significantly. Two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) analysis of chamber contents indicates that excellent pH fractionation is achieved with little overlap between chambers. PIEF pH fractions are further separated using nonporous reversed-phase high-performance liquid chromatography (NPS-RP-HPLC) and HPLC eluent is analyzed on-line by electrospray ionization-time of flight-mass spectrometry (ESI-TOF-MS) for intact protein molecular weight (MW) analysis. The result is a pI versus MW map of bacterial protein content. IEF fractionation down to 0.1 pH units combined with intact protein MW values result in a highly reproducible map that can be used for comparative analysis of different E. coli strains.  相似文献   

19.
Oh-Ishi M  Satoh M  Maeda T 《Electrophoresis》2000,21(9):1653-1669
A two-dimensional gel electrophoresis (2-DE) method that uses an agarose isoelectric focusing (IEF) gel in the first dimension (agarose 2-DE) was compared with an immobilized pH gradient 2-DE method (IPG-Dalt). The former method was shown to produce significant improvements in the 2-D electrophoretic separation of high molecular mass proteins larger than 150 kDa, up to 500 kDa, and to have a higher loading capacity, as much as 1.5 mg proteins in total for micropreparative runs. The extraction medium found best in this study for agarose 2-DE of mammal tissues was 6 M urea, 1 M thiourea, 0.5% 2-mercaptoethanol, protease inhibitor cocktail (Complete Mini EDTA-free), 1% Triton X-100 and 3% 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS). Trichloroacetic acid (TCA) treatment of the agarose gel after IEF is to be carefully weighed beforehand, because some high molecular mass proteins were less likely to enter the second-dimensional polyacrylamide gel after TCA fixation, and proteins such as mouse skeletal muscle actin gave pseudospots in the agarose 2-DE patterns without TCA fixation. As a good compromise we suggest fixation of proteins in the agarose gel with TCA for one hour or less. The first-dimensional agarose IEF gel containing Pharmalyte as a carrier ampholyte was 180 mm in length and 2.5-4.8 mm in diameter. The gel diameter was shown to determine the loading capacity of the agarose 2-DE, and 1.5 mg liver proteins in total were successfully separated by the use of a 4.8 mm diameter agarose gel.  相似文献   

20.
Membrane proteins are rarely identified in two-dimensional electrophoretic (2-DE) proteomics maps. This is due to low abundancy, poor solubility, and inherent hydrophobicity leading to self-aggregation during the first dimension. In this study, membrane proteins from the Gram-positive bacterium Streptococcus mutans were solubilized using three different methods and evaluated by 2-DE. In the first method, the extraction was performed using sodium dodecyl sulfate (SDS) followed by solubilization with a chaotropic buffer and precipitation with methanol/chloroform. The second method was based on temperature-dependent phase partitioning using Triton X-114 followed by purification using the ReadyPrep 2-D clean-up kit from Bio-Rad. The third method involved extraction using the organic solvents trifluoroethanol (TFE) and chloroform, which produced three separate phases. The upper aqueous phase, enriched with TFE, gave the highest overall protein yield and best 2-DE resolution. Protein spot identification by nanoelectrospray quadrupole time of flight (QTOF)-tandem mass spectrometry (MS/MS) revealed known membrane and surface-associated proteins. This is the first report describing the successful solubilization and 2-D electrophoresis of membrane proteins from a Gram-positive bacterium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号