首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Owing to poor bonding between coarse fly ash particles and hydration products, gap-graded blended cements with fly ash usually show lower compressive strengths than Portland cement. Surface cementitious properties of coarse fly ash were improved by dehydration and rehydration processes in the present study. The results show that during the calcination at 750?°C, C?CS?CH gel is mainly transformed into a new nesosilicate, which is similar to a less crystalline C2S. The formation of melilite from hydration products is also noticed at 900?°C, however, this will not contribute to rehydration of calcined fly ash. Rehydration of new generated nesosilicate on the surface of coarse fly ash leads to a better bonding between coarse fly ash particles and hydration products. As a result, both early and late mechanical properties of gap-graded blended cements containing 25% cement clinker and 39% calcined coarse fly ash are higher than those of 100% Portland cements.  相似文献   

2.
Prediction and control of concrete temperature rise due to cement hydration is of great significance for mass concrete structures since large temperature gradients between the surface and the core of the structure can lead to cracking thus reducing durability of the structure. Cement replacement with supplementary cementitious materials (SCMs) is frequently used to reduce the concrete temperature rise. Several models have been proposed for predicting heat release of blended cements; however, none of them address incorporation of metakaolin into the mixture. Isothermal calorimetry measurements, based on statistical experimental design, were taken on pastes incorporating combinations of SCMs and chemical admixtures. The data were then used to develop equations to predict the total heat reduction with the incorporation of chemical admixtures and SCMs. Analysis of the calorimetry data indicated that chemical admixtures do not have a significant effect on heat evolution beyond 12 h. SCMs investigated in this study (fly ash, slag, silica fume and metakaolin), on the other hand, were found to have a significant effect at hydration ages of 12, 24, 48 and 72 h.  相似文献   

3.
In this work, the hydration rate and products of blended zeolite cements were studied for periods up to 360 days. Thermoanalytical methods (TG/DTG and DTA) were applied in order to evaluate the hydration rate of blended cements, while. X-ray diffraction and FTIR spectroscopy were used in order to identify the hydrated products. As it is concluded the incorporation of zeolite in cement contributes to the consumption of Ca(OH)2 formed during the cement hydration and the formation of cement-like hydrated products. The pozzolanic reaction of the zeolite is rather slow during the first days of hydration but it is accelerated after the 28 days.  相似文献   

4.
The difference among the effects of high-temperature curing on the early hydration properties of the pure cement, the binder containing fly ash, the binder containing GGBS, and the binder containing steel slag was investigated by determining the compressive strength, non-evaporable water content, hydration heat, and Ca(OH)2 content. Results show that the order of the influence degrees of high-temperature on the early hydration of different binders is the binder containing GGBS > the binder containing steel slag > the binder containing fly ash > the pure cement. In the case of short period of high-temperature curing (only 1 day), the strength growth rate of the concrete containing GGBS is the greatest. Though the influence of increasing high-temperature curing period on the hydration degree of the binder containing fly ash is not the most significant, the strength growth rate of the concrete containing fly ash is the most significant due to the excessive consumption of Ca(OH)2 by reaction of fly ash. In the case of high-temperature curing, the Ca(OH)2 content of the paste containing steel slag is much higher than those of the paste containing GGBS and the paste containing fly ash, so though high-temperature curing promotes the hydration of the binder containing steel slag significantly, its influence on the strength growth rate of the concrete containing steel slag is not so significant.  相似文献   

5.
This paper investigates the influence of mechanical grinding on pozzolanic characteristics of circulating fluidized bed fly ash (CFA) from the dissolution characteristics, paste strength, hydration heat and reaction degree. Further, the hydration and hardening properties of blended cement containing different ground CFA are also compared and analyzed from hydration heat, non-evaporable water content, hydration products, pore structure, setting time and mortar strength. The results show that the ground CFA has a relatively higher dissolution rate of Al2O3 and SiO2 under the alkaline environment compared with that of raw CFA, and the pozzolanic reaction activity of ground CFA is gradually improved with the increase of grinding time. At the grinding time of 60 min, the pozzolanic reaction degree of CFA paste is improved from 6.32% (raw CFA) to 13.71% at 7 days and from 13.65 to 28.44% at 28 days, respectively. The relationships of pozzolanic reaction degree and grinding time of CFA also conform to a quadratic function. For ground CFA after a long-time grinding such as 60 min, the hydration heat and non-evaporable water content of blended cement containing CFA are significantly improved. Owing to relatively smaller particle size and higher activity of ground CFA, the blended cement paste has more hydration products, narrower pore size distribution and lower porosity. For macroscopic properties, with increase in grinding time of CFA, the setting time and strength of blended cement are gradually shortened and improved, respectively.  相似文献   

6.
This paper studies the addition (0–40% w/w) of natural zeolite (NZ, 84% clinoptilolite) in blended cements made with Portland cement (PC) with low and medium C3A content. The isothermal calorimetry was used to understand the effect of NZ on the early cement hydration. For low C3A cement, the addition of NZ produces mainly a dilution effect and then the heat released curve is similar to plain cement with lower intensity. For medium C3A cement, the curve shows the C3S peak in advance and a high intensity of third peak attributed to C3A hydration. The high cation fixed of NZ reduces the ions concentration (especially alkalis) in the mixing water stimulating the PC hydration. The flowability decreases when the NZ replacement level increases. Results of Fratini’s test show that NZ with both PCs used presents slow pozzolanic activity. At early age, XRD and FTIR analyses confirm that hydration products are the same as that of the corresponding PC and the CH is progressively reduced after 28 days and some AFm phases (hemi- and monocarboaluminate) appear depending on the NZ percentage and the PC used. For low replacement levels, the compressive strength is higher than the corresponding PC from 2 to 28 days. For high replacement levels, the early compressive strength is lower than that of corresponding plain PC and the pozzolanic reaction improves the later compressive strength of blended cements.  相似文献   

7.
The early hydration properties of cement–steel slag composite binder and cement–limestone powder composite binder were compared in this study by determining the hydration heat of binder within 3 days, the pore structure of paste and the compressive strength of mortar at the age of 3 days. Results show that at the curing temperature of 25 °C, the early hydration heat of the binder containing steel slag is smaller, and the early pore structure of the paste containing steel slag is coarser, but the early compressive strength of the mortar containing steel slag is higher compared with the mix containing limestone powder. Though the early reaction degree of steel slag is low, its chemical contribution to the strength of mortar cannot be neglected. At the curing temperature of 50 °C, the early hydration heat of the binder containing steel slag is larger, and the early pore structure of the paste containing steel slag is finer, and the early compressive strength of the mortar containing steel slag is even higher compared with the mix containing limestone powder. Raising curing temperature can enhance the role played by steel slag more significantly than that played by limestone powder in the hydration and hardening of the composite binder.  相似文献   

8.
A study was carried out comparing silica fume (SF) and dealuminated kaolin (DK) as pozzolanic materials in blended cements. Ten, 20 or 30 wt% of SF or DK were substituted for Portland cement. The kinetics of hydration up to 45 h were studied using isothermal conduction calorimetry. Blends containing pozzolanic materials usually have decreased heats of hydration compared to pure cement during the period of C3S hydration, i.e. during the main hydration peak. Depending on the chemical composition and the activity of the pozzolan, the reaction taking place with the lime typically contributes to the heat output after the main hydration peak.The pozzolanic activity of DK is the principal factor and heat evolution increases with respect to pure PC mortar, during the first 15 h. The presence of hydrated silica (silanol groups) in DK increases the pozzolanic activity especially before and during induction period. The acidic silanol sites are capable of a fast acid-base reaction with the alkalis and with any Ca(OH)2 present in cement during the induction period.  相似文献   

9.
The effect of nano-metakaolin (NMK) addition on hydration characteristics of fly ash (FA) blended cement mortar was experimentally investigated. The amorphous or glassy silica, which is the major component of a pozzolan, reacts with the calcium hydroxide liberated during calcium silicate hydration. It is believable to add FA and NMK particles in order to make high performance concrete. The physico-mechanical properties of FA blended cement mortars made with different percentages of NMK were investigated. The experimental results showed that the compressive and flexural strengths of mortars containing NMK are higher than those of FA blended cement mortar at 60 days of hydration age. It is demonstrated that the nanoparticles enhances strength than FA. In addition, the hydration process was monitored using scanning electron microscopy and thermal gravimetric analysis (TG). The results of these examinations indicate that NMK behaves not only as a filler to improve microstructure, but also as an activator to promote the pozzolanic reaction.  相似文献   

10.
Study on optimization of hydration process of blended cement   总被引:1,自引:0,他引:1  
To optimize the hydration process of blended cement, cement clinker and supplementary cementitious materials (SCMs) were ground and classified into several fractions. Early hydration process of each cementitious materials fraction was investigated by isothermal calorimeter. The results show fine cement clinker fractions show very high hydration rate, which leads to high water requirement, while fine SCMs fractions present relatively high hydration (or pozzolanic reaction) rate. Cement clinker fractions in the range of 8–24 μm show proper hydration rate in early ages and continue to hydrate rapidly afterward. Coarse cement clinker fractions largely play “filling effect” and make little contribution to the properties of blended cement regardless of their hydration activity (or pozzolanic activity). The hydration process of blended cement can be optimized by arranging high activity SCMs, cement clinker, and low activity SCMs in fine, middle, and coarse fractions, respectively, which not only results in reduced water requirement, high packing density, and homogeneous, dense microstructure, but also in high early and late mechanical properties.  相似文献   

11.
本文将磷酸氢钙(CaHPO4·2H2O,DCPD)添加到硅酸三钙(Ca3SiO5,C3S)骨水泥中,采用X射线衍射(XRD),扫描电镜(SEM),万能力学测试机等手段对不同添加量的骨水泥进行表征,考察添加DCPD对硅酸三钙骨水泥性能的影响。实验表明,C3S材料中添加10% DCPD有着优于单纯C3S骨水泥的水化性能,骨水泥的初凝时间从92 min缩短到80 min;添加20%~30% DCPD能提高材料的短期力学强度,可以实现其短期抗压强度的优化;添加30%~40% DCPD的材料有着优良的生物活性与适中的可降解性能。结果表明,通过添加DCPD优化C3S水泥的性能,对各种不同性能具有DCPD添加量的依赖性。通过进一步优化DCPD添加量,将可能获得优良的生物活性骨缺陷填充材料。  相似文献   

12.
The hydration and hardening processes of Portland cements prepared from clinkers mineralized with sodium fluoride and/or oxides (SnO2 or CuO) was studied. Type I cements (CEM I) were prepared by grinding with gypsum (5%) of clinkers obtained by the burning of an industrial raw mix with different mineralizers: sodium fluoride, oxides (CuO and SnO2) or mixtures of sodium fluoride and oxide (NaF + CuO or NaF + SnO2). The influence of foreign ions on the clinker morphology was assessed by scanning electronic microscopy (SEM) and energy dispersive X-ray spectrometry (EDX). The hydration processes of modified cements were examined by X-ray diffraction analysis (XRD) and thermal analysis techniques (TG and DTA). The main properties of the cements, i.e., flexural and compressive strengths, setting time, and soundness were also determined. A good correlation between the chemically bound water or portlandite content in pastes hydrated 2–28 days and compressive strength developed by mortars was observed. The influence of mineralizers on the kinetic of hydration processes and main properties of cements is different—0.5% NaF and 0.5% SnO2 and their mixture increase the rate of cement hydration and hardening processes, opposite to 0.5% CuO that reduce the rate.  相似文献   

13.
The alkaline activation of blast furnace slag promotes the formation of new cement materials. These materials have many advantages over ordinary Portland cement, including high strength, low production cost and good durability. However, many aspects of the chemistry of alkaline activated slags are not yet very well understood. Some authors consider that these processes occur through a heterogeneous reaction, and that they can be governed by three mechanisms: a) nucleation and growth of the hydrated phase; b) phase boundary interactions and c) any diffusion process though the layer of hydration products. The aim of this paper was to determine the mechanism explaining the early reaction of alkaline activation of a blast furnace slag through the use of calorimetric data. A granulated blast furnace slag from Avilés (Spain) with a specific surface of 4450 cm2> g-1 was used. The alkaline activators used were NaOH, Na2CO3 and a mix of waterglass (Na2SiO3·nH2O and NaOH. The solution concentrations were constant (4% Na2O with respect to the slag mass). The solutions were basic (pH 11-13). The mixes had a constant solution/slag ratio of 0.4. The thermal evolution of the mixes was monitored by conduction calorimetry. The test time was variable, until a rate of heat evolution equal to or less than 0.3 kJ kg-1 h-1 was attained. The working temperature was 25°C. The degree of hydration (α) was determined by means of the heat of hydration after the induction period. The law governing the course of the reaction changes at a certain degree of hydration. From a generally accepted equation, the values of α at which the changes are produced were determined. These values of α depend on the nature of the alkaline activator. Nevertheless, for high values of α, the alkaline activation of slag occurs by a diffusion process. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
The hydration of ordinary Portland cement (OPC) blended with blast-furnace slag (BFS) is a complex process since both materials have their own reactions which are, however, influenced by each other. Moreover, the effect of the slag on the hydration process is still not entirely known and little research concerning the separation of both reactions can be found in the literature. Therefore, this article presents an investigation of the hydration process of mixes in which 0–85% of the OPC is replaced by BFS. At early ages, isothermal, semi-adiabatic and adiabatic calorimetric measurements were performed to determine the heat of hydration. At later ages, thermogravimetric (TG) analyses are more suitable to follow up the hydration by assessment of the bound water content w b. In addition, the microstructure development was visualized by backscattered electron (BSE) microscopy. Isothermal calorimetric test results show an enhancement of the cement hydration and an additional hydration peak in the presence of BFS, whilst (semi-)adiabatic calorimetric measurements clearly indicate a decreasing temperature rise with increasing BFS content. Based on the cumulative heat production curves, the OPC and BFS reactions were separated to determine the reaction degree Q(t)/Q (Q = cumulative heat production) of the cement, slag and total binder. Moreover, thermogravimetry also allowed to calculate the reaction degree by w b(t)/w b∞. The reaction degrees w b(t)/w b∞, Q(t)/Q and the hydration degrees determined by BSE-image analysis showed quite good correspondence.  相似文献   

15.
Considerable attention has been given to special cements, capable of reducing CO2 emissions, energy and limestone consumption. Supersulfated cements are made of blast furnace slag (GBFS), calcium sulfate (CS), and small quantities of activator, but achieving their optimal proportions is complex. In this paper, the effects of the both CS and alkali activator (KOH) contents were studied. The main results showed that the compressive strength, heat of hydration, and consumption of anhydrite phase were strongly influenced by the alkaline content, while low calcium sulfate or alkaline content increased the formation of CSH. The instability of ettringite was verified: with low CS, the probable hypothesis was its conversion into monosulfate due to the scarcity of sulfate; with high CS, it was associated with intense, rapid consumption of anhydrite with high KOH content, followed by the precipitation of ettringite on the surface of slag grains and its conversion into monosulfate.  相似文献   

16.
Superfine particles have been used as mineral admixtures to enhance physical properties, mechanical properties, and durability of concrete in a lot of research. In this study, superfine steel slag (FSS) and superfine phosphorus slag (FPS) were ground to 643 and 657 m2 kg?1, respectively. The water-to-binder (W/B) ratios were set as 0.45 as well as 0.35, and the cement replacements adopted were 15 and 30%. The effects of FSS and FPS on long-term performance and durability of concrete were investigated. The results show that the increase amplitude of reaction degree of FPS is higher than that of FSS at late age (after 90 days). FPS can improve the pore structure of concrete which is beneficial to the resistance to carbonation and chloride ion penetration for concrete at late age while FSS cannot. FPS is also more advantageous to the development of compressive strength and splitting tensile strength of concrete when compared to FSS at late age. FPS is much more beneficial to the resistance to sulfate attack of concrete while FSS is more disadvantageous to the resistance to sulfate attack of concrete as the replacement ratio increases.  相似文献   

17.
This research reports on the effects of including natural pozzolans in two Portland cements with different mineralogical compositions, with and without excess gypsum at amounts equivalent to 7.0% SO3. The main analytical techniques used to study these effects were: the amount of water needed to make a paste of normal consistency, the 2-day Frattini pozzolanicity test and conduction calorimetry. The results obtained showed that these natural pozzolans caused contradictory (accelerating and retarding) effects on the rheology of the resulting cements, depending on the mineralogical composition of the respective Portland clinkers as well as the reactive chemical composition of the pozzolans, in particular their reactive alumina content (Al2O3 r−). The addition of gypsum also caused acceleration and delays in the calorimetric evolution of the resulting pastes, which proved to be heavily dependent upon the more or less aluminic chemical character of the natural pozzolans studied. This, in turn, was conditioned by the higher or lower Al2O3 r− content (for the SiO2 r− content was of a very similar order of magnitude in all three pozzolans analyzed). The Al2O3 r− content was likewise responsible for paste behaviour in the afore-mentioned trials and analyses, and the pozzolanic activity exhibited by the compound was found to be more specific than generic, indirectly stimulating C3A hydration more intensely and rapidly than C3S hydration in PC1, one of the two Portland cements used. Indeed, when these natural pozzolans exhibited such prior pozzolanic activity in the second cement studied, PC2, the hydration of its 79.5% of C3S was not indirectly stimulated to the same degree; rather, the contrary effect was observed, i.e., this cement was physically diluted by the three pozzolans. Pozzolan O stimulated hydration directly and non-directly more than indirectly, while pozzolan C acted conversely, and A exhibited varying combinations of the two patterns. The physical state of the reactive alumina, Al2O3 r−, in these three natural pozzolans, must be more amorphous than vitreous, i.e., resembling metakaolin more than fly ash in this regard. That notwithstanding, the reactive alumina content in each pozzolan must have conditioned the water/cementitious material ratio obtained for the respective blends with both types of Portland cement (a finding that could be used in future for speedy, simple, reliable and economical characterization), as well as their specific pozzolanicity developed and the rate and total heat of hydration generated by such blended cements.  相似文献   

18.

The influence of phosphate slag with different finenesses and activators on the hydration of high-belite cement has been studied by using the hydration heat of binders, the DTA curves, the SEM images, and the specific strength. Results indicated that doped phosphorus slag in the cement will reduce heat of hydration. The activity of phosphate slag was low at early stage, but pozzolanic activity of phosphorus slag is higher than that of fly ash. Increasing the specific surface area and curing time and using Ca(OH)2 combined with gypsum can clearly promote the hydration degree of phosphorus slag. The findings in this paper show that since phosphorus slag can promote the hydration of high-belite cement, the strength contribution of cement is increased. Moreover, the greater the specific surface area is, the more significant the promotion effect at 90 d is.

  相似文献   

19.
In this paper, the influence of fineness on the cementitious properties of steel slag and the properties of cement containing steel slag with different finenesses were investigated. The results show that increasing the fineness can significantly enhance the early as well as the late cementitious properties of steel slag. However, the early hydrations of cement and steel slag tend to hinder each other especially in the case of large steel slag replacement and high fineness of steel slag. Therefore, increasing fineness of steel slag cannot improve the early cementitious properties of the cement containing steel slag. At 28 days, the hydrations of steel slag and cement tend to promote each other. Increasing the fineness of steel slag enhances the late cementitious properties of the cement containing steel slag significantly.  相似文献   

20.
Journal of Thermal Analysis and Calorimetry - The effects of water/binder ratio and temperature on hydration heat and properties of ternary blended cement containing slag and iron tailing powder...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号