首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Cyanobacteria, also known as blue-green algae, are known to be a rich source of secondary metabolites with diverse chemical structures and biological activities. Over 1100 natural constituents of cyanobacterial origin have been reported in the literature. These include various natural biologically active constituents with antimicrobial, antiviral, immunosuppressive, and anticancer activities. Terrestrial cyanobacteria of genus Fischerella (Family Fischerellaceae), belonging to order Stigonematales have recently received enormous attention from the researchers due to the presence of vast array bioactive compounds. Fischerella species are filamentous cyanobacteria with creeping thallus and sheath in filaments. Several species within the genus are known to produce interesting bioactive constituents. Perhaps the best characterized are F. ambigua and F. muscicola, which have been reported to produce antibacterial, antifungal and antialgal isonitrile containing indole alkaloids, such as hapalindoles, ambiguine isonitriles, fischerindoles, and wetwitindolinones. Keeping in mind these resources, a detailed literature survey on a cultured, fresh water and terrestrial cyanobacterium Fischerella ambigua (N?g.) Gom. has been carried out. The current review describes the chemical constituents isolated from different extracts of Fischerella ambigua, as well as their biological activities.  相似文献   

3.
Oxidative stress is one of the significant precursors of various metabolic diseases such as diabetes, Parkinson’s disease, cardiovascular diseases, cancer, etc. Various scientific reports have indicated that secondary plant metabolites play an important role in preventing oxidative stress and its harmful effects. In this respect, this study was planned to investigate the phenolic profile and antioxidant and antidiabetic potentials of the aqueous extracts from Turkish Cistus species by employing in vitro methods. In vitro digestion simulation procedure was applied to all extracts to estimate the bioavailability of their phenolic contents. Total phenolic, flavonoid, phenolic acid and proanthocyanidin contents were determined for all phases of digestion. In addition, changes in the quantity of the assigned marker flavonoids (tiliroside, hyperoside and quercitrin) were monitored by High-Performance Thin Layer Chromatography (HPTLC) analysis. The antioxidant activity potentials of the extracts were studied by various methods to reveal their detailed activity profiles. On the other hand, in vitro α-amylase and α-glucosidase enzymes and advanced-glycation end product (AGE) inhibitory activities of the extracts were determined to evaluate the antidiabetic potentials of extracts. The results showed that aqueous extracts obtained from the aerial parts of Turkish Cistus species have rich phenolic contents and potential antioxidant and antidiabetic activities; however, their bioactivity profiles and marker flavonoid concentrations might significantly be affected by human digestion. The results exhibited that total phenolic contents, antioxidant activities and diabetes-related enzyme inhibitions of the bioavailable samples were lower than non-digested samples in all extracts.  相似文献   

4.
A wide range of analytical techniques are reported for the determination of cinnamaldehyde (CCHO) and eugenol (EOH) in plant extracts and herbal formulations either alone or in combination. Nevertheless, sustainable/green analytical techniques for the estimation of CCHO and EOH either alone or in combination are scarce in the literature. Accordingly, the present research was carried out to establish a rapid, highly sensitive, and sustainable high-performance thin-layer chromatography (HPTLC) technique for the simultaneous estimation of CCHO and EOH in the traditional and ultrasound-assisted methanolic extracts of Cinnamomum zeylanicum, C. burmannii, and C. cassia and their essential oils. The simultaneous estimation of CCHO and EOH was performed through NP-18 silica gel 60 F254S HPTLC plates. The cyclohexane/ethyl acetate (90:10, v v−1) solvent system was optimized as the mobile phase for the simultaneous estimation of CCHO and EOH. The greenness score of the HPTLC technique was predicted using AGREE software. The entire analysis was carried out at a detection wavelength of 296 nm for CCHO and EOH. The sustainable HPTLC technique was observed as linear in the range 10–2000 ng band−1 for CCHO and EOH. The proposed technique was found to be highly sensitive, rapid, accurate, precise, and robust for the simultaneous estimation of CCHO and EOH. The content of CCHO in traditional methanolic extracts of C. zeylanicum, C. burmannii, and C. cassia was found to be 96.36, 118.49, and 114.18 mg g−1, respectively. However, the content of CCHO in ultrasound-assisted methanolic extracts of C. zeylanicum, C. burmannii, and C. cassia was found to be 111.57, 134.39, and 129.07 mg g−1, respectively. The content of CCHO in essential oils of C. zeylanicum, C. burmannii, and C. cassia was found to be 191.20, 214.24, and 202.09 mg g−1, respectively. The content of EOH in traditional methanolic extracts of C. zeylanicum, C. burmannii, and C. cassia was found to be 73.38, 165.41, and 109.10 mg g−1, respectively. However, the content of EOH in ultrasound-assisted methanolic extracts of C. zeylanicum, C. burmannii, and C. cassia was found to be 87.20, 218.09, and 121.85 mg g−1, respectively. The content of EOH in essential oils of C. zeylanicum, C. burmannii, and C. cassia was found to be 61.26, 79.21, and 69.02 mg g−1, respectively. The amounts of CCHO and EOH were found to be significantly higher in ultrasound-assisted extracts of all species compared to its traditional extraction and hence ultrasound extraction has been proposed as a superior technique for the extraction of CCHO and EOH. The AGREE analytical score of the present analytical technique was predicted as 0.75, suggesting excellent greenness profile of the proposed analytical technique. Based on all these observations and results, the proposed sustainable HPTLC technique can be successfully used for the simultaneous estimation of CCHO and EOH in different plant extracts and herbal products.  相似文献   

5.
《Arabian Journal of Chemistry》2020,13(11):7652-7664
Seaweeds are known as excellent sources of unique bioactive metabolites. In the present study, proton nuclear magnetic resonance (1H NMR) combined with principal component analysis (PCA) was used to distinguish the metabolic variations in Brown seaweed, Sargassum polycystum treated under different drying processes. The study also evaluated the phytochemistry, antioxidant, and antimicrobial effects of S. polycystum extracted in different solvents. Mutually under the different drying processes investigated, a total of 12 metabolites were identified from 1H NMR analysis. Freeze drying emerged as the most efficient process that preserved most of the potentially beneficial metabolites in the samples. The results of the qualitative phytochemical screening of differentially dried S. polycystum extracts revealed the presence of various secondary metabolites. The 70% ethanol extract exhibited the highest total phenolic (627 ± 50.81 mg GAE/100 g dried samples) and also displayed the highest DPPH scavenging activity (61.4 ± 0.171%) at the highest concentration (3 mg ml−1) tested. Methanol extract on the other hand contained the highest total antioxidant capacity (121.00 ± 0.003 mmol/g) followed by 70% ethanol extract (120.00 ± 0.001 mmol/g) at concentration of 1.25 mg/mL. The 70% ethanol extract also showed inhibition zone towards all bacteria samples tested compared to others solvent extracts. Based on these results, the identification of metabolites variations using PCA is considered as very useful procedure as a basis to recommend the most efficient processing (drying) method. The potential utilization of the tested Brown seaweed S. polycystum species as a source of antioxidants and antibacterial agents were also highlighted. The commercial cultivation of the species therefore, needs to be encouraged and promoted.  相似文献   

6.
The current investigation aimed to shed light in the volatile and non-volatile secondary metabolites of Ajuga orientalis L. from Jordan. GC/MS and GC/FID analysis of the hydrodistilled essential oil obtained from aerial parts of the plant revealed tiglic acid (18.90 %) as main constituent. Each of the methanol and butanol fractions of A. orientalis were screened for their total phenol content (TPC), total flavonoid content (TFC), and antioxidant activity determined by DDPH and ABTS methods. The extracts were then analyzed by LC-ESI-MS/MS to unveil their chemical constituents, especially phenols and flavonoids. Results showed that the AO-B extract had the highest TPC (217.63 ± 2.65 mg gallic acid/g dry extract), TFC (944.41 ± 4.77 mg quercetin /g dry extract), highest DPPH and ABTS antioxidant activity ((4.00 ± 0.20) × 10-2; (3.00 ± 0.20) × 10-2 mg/mL, respectively) as compared to the AO-M extract. LC-ESI-MS/MS analysis of both extracts revealed the presence of several phenolics, flavonoids and nonphenolic acids.  相似文献   

7.
Citrus genus is a prominent staple crop globally. Long-term breeding and much hybridization engendered a myriad of species, each characterized by a specific metabolism generating different secondary metabolites. Citrus aurantium L., commonly recognized as sour or bitter orange, can exceptionally be distinguished from other Citrus species by unique characteristics. It is a fruit with distinctive flavor, rich in nutrients and phytochemicals which possess different health benefits. This paper presents an overview of the most recent studies done on the matter. It intends to provide an in-depth understanding of the biological activities and medicinal uses of active constituents existing in C. aurantium. Every plant part is first discussed separately with regards to its content in active constituents. All extraction methods, their concepts and yields, used to recover these valuable molecules from their original plant matrix are thoroughly reported.  相似文献   

8.
《Comptes Rendus Chimie》2016,19(9):1101-1112
‘Jardin de Granville’ is a new hybrid rose variety dedicated to cosmetic applications. To perform an exhaustive molecular investigation of the non-volatile secondary metabolites in this cultivar, a global approach was developed, combining four chromatographic techniques (HPTLC, HPLC-DAD-ELSD, UHPLC-HRMS and GC–MS). This approach afforded an on-line phytochemical fingerprinting of four plant organs of ‘Jardin de Granville’. Despite the wide diversity of molecular families and the pronounced differences in polarity between the molecules, this analytical strategy enabled an overview of the molecular composition of each sample to be rapidly obtained by HPTLC and HPLC and the molecular content to be correctly identified thanks to coupling with mass spectrometry. Polyphenols were identified in the EtOH/H2O extracts; triterpenes, chlorophyll derivatives and lipids were characterized in the EtOAc extracts, and the fatty acids squalene, α-tocopherol and β-sitosterol were highlighted in the heptane extracts.  相似文献   

9.
Maca is a Peruvian tuberous root of the Brassicaceae family grown in the central Andes between altitudes of 4000 and 4500 m. The medicinal plant is a nutraceutical with important biological activities and health effects. In this study, we report a rapid high‐performance thin layer chromatography (HPTLC)‐(?)desorption electrospray ionization (DESI)‐mass spectrometry (MS) method to profile and separate intact glucosinolates without prior biochemical modifications from the hydromethanolic extracts of two phenotypes, red and black Maca (Lepidium peruvianum) seeds. In the first stage of the plant's life cycle, aromatic glucosinolates were the main chemical constituents whereby six aromatic, three indole, and one aliphatic glucosinolate were tentatively identified. At the seedling stage, glucolepigramin/Glucosinalbin was the most predominant precursor, rather than Glucotropaeolin, which is mainly found in hypocotyls and roots. These findings lead us to suggest that glucolepigramin/glucosinalbin play a major role as active precursors in the biosynthetic pathways of other secondary metabolites in the early stages of plant development. Between red and black Maca seeds, only minor differences in the relative abundances of glucosinolates were observed rather than different plant metabolites. For the first time, we report six potential plant antibiotics, phytoanticipins: glycosylated ascorbigens and dihydroascorbigens from Maca seeds. We also investigated a targeted reverse phase C18 functionalized TLC‐DESI‐MS method with high sensitivity and specificity for Brassicaceae fatty acids in Maca seeds and health supplements such as black Maca root lyophilized powder and tinctures. The investigation of secondary metabolites by normal and reverse phase TLC‐DESI‐MS methods, described in this study, can aid in their identification as they begin to emerge in later stages of development in plant tissues such as leaves, hypocotyls, and roots.  相似文献   

10.
In the study, anti-Candida activity and phenol contents of Lythrum salicaria L. calli and wild species have been evaluated. The seeds of L. salicaria (Lythraceae), collected from Lahidjan City in the north of Iran, were cultured in Murashige and Skoog medium (MSM) with a supplement, gibberellin, to germinate. Callus inductions were performed from segments of seedling on MSM containing different concentrations of plant growth regulators, 2,4-dichlorophenoxyacetic acid (2,4-D) and 6-benzylaminopurine (BAP). The activity of calluses extracts, wild plant, gallic acid, and 3,3′,4′-tri-O-methylellagic acid-4-O-β-d-glucopyranoside (TMEG) as the main phenolic compounds against Candida albicans was assessed using cup plate diffusion method. The total phenols contents of calli and wild plant extracts were analyzed using Folin–Ciocalteu reagent. The callus formation in MSM supplemented with various concentrations of 2,4-D and BAP were 0–100 %. Anti-Candida activity of callus extract which obtained from MSM supplemented with 2,4-D and BAP (1 mg?dm?3) was similar to the wild plant extract. Minimum inhibitory concentration values of gallic acid and TMEG were obtained as 0.312 and 2.5 mg?cm?3, respectively. Gallic acid equivalent values in all treatments were from 0 to 288 μg GAE mg?1. Phenolic contents of plant aerial parts (331?±?3.7 μg GAE mg?1) and the callus, which developed in MSM including 1 mg?dm?3 of both 2,4-D and BAP, showed the same phenolic value and exhibited anti-Candida extract activity.  相似文献   

11.
In this study, it was aimed to investigate the chemical composition and antioxidant activities of two Euphorbia species. The major component of the fatty acid compositions obtained from the petroleum ether extracts was identified as palmitic acid for Euphorbia gaillardotii and Euphorbia macroclada. The main constituents of the essential oils were identified as arachidic acid for E. gaillardotii and tetratetracontane for E. macroclada. Among the 27 studied compounds, hesperidin, rutin, hyperoside and quinic, malic, gallic and tannic acids were found to be the most abundant compounds in the two Euphorbia species. The methanol extracts of E. gaillardotii and E. macroclada showed strong antioxidant activity in all tested methods. Particularly, IC50 values of E. macroclada methanol extract that was the richest in terms of total phenolic-flavonoid contents were found to be lower than α-tocopherol and butylated hydroxytoluene in β-carotene bleaching, 2,2-diphenyl-1-picrylhydrazyl free and ABTS cation radical scavenging methods.  相似文献   

12.
The mechanism of action and properties of a solid-phase ligand library made of hexapeptides (combinatorial peptide ligand libraries or CPLL), for capturing the “hidden proteome”, i.e. the low- and very low-abundance proteins constituting the vast majority of species in any proteome, as applied to plant tissues, are reviewed here. Plant tissues are notoriously recalcitrant to protein extraction and to proteome analysis. Firstly, rigid plant cell walls need to be mechanically disrupted to release the cell content and, in addition to their poor protein yield, plant tissues are rich in proteases and oxidative enzymes, contain phenolic compounds, starches, oils, pigments and secondary metabolites that massively contaminate protein extracts. In addition, complex matrices of polysaccharides, including large amount of anionic pectins, are present. All these species compete with the binding of proteins to the CPLL beads, impeding proper capture and identification / detection of low-abundance species. When properly pre-treated, plant tissue extracts are amenable to capture by the CPLL beads revealing thus many new species among them low-abundance proteins. Examples are given on the treatment of leaf proteins, of corn seed extracts and of exudate proteins (latex from Hevea brasiliensis). In all cases, the detection of unique gene products via CPLL capture is at least twice that of control, untreated sample.  相似文献   

13.
The chemical constituent pattern and morphological traits of six species of Indigofera; I. argentea, I. articulata, I. colutea, I. oblongifolia, I. hochstetteri and I. sessiliflora were surveyed and compared. The chemical characters revealed one series for all species using total estimation of secondary metabolites; alkaloids, flavonoids, saponins, tannins, terpenoids and phenolic compounds by using TLC and HPLC analysis. 26 main morphological studies were distinguished as macro and micro- characters. The studied species showed different active phytochemical constituents and high number of morphological characters. Similarity matrix and cluster analysis were constructed based on all traits. The results illustrated that there were some related and distant species by using the tree display graph besides I. hochstetteri is regarded as the transitional species among the studied species. The study confirmed that more studies should be carried out to investigate about unknown phenolic compounds.  相似文献   

14.
The pharmacological activities in bioactive plant extracts play an increasing role in sustainable resources for valorization and biomedical applications. Bioactive phytochemicals, including natural compounds, secondary metabolites and their derivatives, have attracted significant attention for use in both medicinal products and cosmetic products. Our review highlights the pharmacological mode-of-action and current biomedical applications of key bioactive compounds applied as anti-inflammatory, bactericidal with antibiotics effects, and pain relief purposes in controlled clinical studies or preclinical studies. In this systematic review, the availability of bioactive compounds from several salt-tolerant plant species, mainly focusing on the three promising species Aster tripolium, Crithmum maritimum and Salicornia europaea, are summarized and discussed. All three of them have been widely used in natural folk medicines and are now in the focus for future nutraceutical and pharmacological applications.  相似文献   

15.
Inunicosides A?K (1–11), eleven unusual polyacylated ent-kaurane diterpenoid glycosides, were isolated from the flowers of a traditional Chinese herbal plant Inula japonica. Their structures with absolute configurations were determined on the basis of comprehensive spectroscopic analyses, chemical degradation, enzymatic hydrolysis and ECD experiments. Among these isolates, inunicoside K (11) showed mild antibacterial activity against Staphylococcus aureus ATCC 25923. Diterpene constituents have been rarely reported in the Inula species, and thus the discovery of this panel of compounds greatly enriches the chemical diversity of metabolites from the genus Inula.  相似文献   

16.
The present study aims to establish a high-performance thin layer chromatography (HPTLC)-based comparative analysis, directed toward characterization of nucleobases in aqueous and alcoholic extracts of sea buckthorn leaves from three different varieties: Hippophae salicifolia, Hippophae rhamnoides mongolica, and Hippophae rhamnoides turkestanica. The alcoholic and aqueous leaf extracts from these sea buckthorn varieties were prepared using accelerated solvent extraction technique. A novel HPTLC method for separating and identifying six nucleobases, namely, guanosine, guanine, cytosine, adenine, uracil, and thymine were adopted. HPTLC analysis indicated the presence of one or more of these nucleobases in a total of six leaf extracts evaluated, their quantities varying from 0.23 to 7.76?µg nucleobase per mg of extract. Though a typical trend could not be observed in the values obtained, the extracts were found to be considerably rich with respect to nucleobase contents. The results acquired from HPTLC were subsequently validated by hyphenation with mass spectrometry and also by applying chemometric tools in form of heat maps, hierarchical cluster dendrograms, and principal component analysis. The presence of nucleobases in the leaf extracts was confirmed by HPLC as well but HPTLC proved to be a better approach for characterization of nucleobases in plant extracts, than high performance liquid chromatography (HPLC).  相似文献   

17.
Terminalia sericea is used throughout Africa for the treatment of a variety of conditions and has been identified as a potential commercial plant. The study was aimed at establishing a high-performance thin layer chromatography (HPTLC) chemical fingerprint for T. sericea root bark as a reference for quality control and exploring chemical variation within the species using HPTLC metabo3lomics. Forty-two root bark samples were collected from ten populations in South Africa and extracted with dichloromethane: methanol (1:1). An HPTLC method was optimized to resolve the major compounds from other sample components. Dichloromethane: ethyl acetate: methanol: formic acid (90:10:30:1) was used as the developing solvent and the plates were visualized using 10% sulfuric acid in methanol as derivatizing agent. The concentrations of three major bioactive compounds, sericic acid, sericoside and resveratrol-3-O-β-rutinoside, in the extracts were determined using a validated ultra-performance liquid chromatography-photodiode array (UPLC-PDA) detection method. The rTLC software (written in the R-programming language) was used to select the most informative retardation factor (Rf) ranges from the images of the analysed sample extracts. Further chemometric models, including principal component analysis (PCA) and hierarchical cluster analysis (HCA), were constructed using the web-based high throughput metabolomic software. The rTLC chemometric models were compared with the models previously obtained from ultra-performance liquid chromatography coupled with mass spectrometry (UPLC-MS). A characteristic fingerprint containing clear bands for the three bioactive compounds was established. All three bioactive compounds were present in all the samples, although their corresponding band intensities varied. The intensities correlated with the UPLC-PDA results, in that samples containing a high concentration of a particular compound, displayed a more intense band. Chemometric analysis using HCA revealed two chemotypes, and the subsequent construction of a loadings plot indicated that sericic acid and sericoside were responsible for the chemotypic variation; with sericoside concentrated in Chemotype 1, while sericic acid was more abundant in Chemotype 2. A characteristic chemical fingerprint with clearly distinguishable features was established for T. sericea root bark that can be used for species authentication, and to select samples with high concentrations of a particular marker compound(s). Different chemotypes, potentially differing in their therapeutic potency towards a particular target, could be distinguished. The models revealed the three analytes as biomarkers, corresponding to results reported for UPLC-MS profiling and thereby indicating that HPTLC is a suitable technique for the quality control of T. sericea root bark.  相似文献   

18.
Sulla (Hedysarum coronarium L.) is a biennal forage legume originated from the Mediterranean basin and used for animal feeding due to its high forage quality and palatability. Several species of Hedysarum have been considered for their nutritional, pharmaceutical, and biological properties, and different applications have been reported, both for human consumption and animal nutrition. Although a systematic investigation of the chemical constituents of Hedysarum spp. has been performed in order to provide chemotaxonomic evidences for the genus and to support the pharmacological application of several species within the genus, few data are available on the chemical constituents of H. coronarium, and only the content of condensed tannins and flavonoids in leaves has been previously reported. In the present paper, results from a detailed chemical analysis of the extracts from the leaves and flowers of H. coronarium grown wild in southern Italy are presented. Identification of the main specialized metabolites within the chemical classes of flavonoids, proanthocyanidins and saponins, is described, including considerations on their content in the two plant organs. Information acquired from this study expands the knowledge on H. coronarium as a source of valuable phytochemicals for different applications in human and animal health and nutrition.  相似文献   

19.
We focused on the determination of biologically active secondary metabolites in wild hops over the course of the vegetation period in four selected sites in Pie??any. Hop was collected in four collection periods in 2010. The objects of research were the leaves of male and female plants, and female cones. Analysis of the extracts from wild hop confirmed differences in total content of polyphenols, flavonoids between the localities and in the growing seasons over the vegetation period. The extracts from leaves from the first harvest in localities “gSládkovi?ova” and the river Vah showed higher levels of polyphenols (4.91–6.93 mg g?1 of dry mass), flavonoids (2.28–2.99 mg g?1 of dry mass) than the extracts from cones collected at the end of the vegetation period (polyphenols 3.63–5.33 mg g?1 of dry mass, flavonoids 1.86–2.16 mg g?1 of dry mass). The extracts from leaves from the first harvest from the “tennis court” site showed lower values of polyphenols and flavonoids. Our findings were that the leaves from the first harvest at the beginning of the growing season contained higher amounts of the secondary metabolites investigated than the cones at the end of the growing season. The content of α-bitter acids in wild hop cones ranged from 1.64 % to 2.91 %, in leaves from 0.11 % to 0.99%. Concentration of β-bitter acids in cones varied from 1.63 % to 1.93 % and in leaves from 0.02 % to 0.61 %.  相似文献   

20.
Woodfordia fruticosa (L.) Kurz is a widely used plant in traditional medicine systems. The tribal communities of Amarkantak, Madhya Pradesh (India) are using this plant for the treatment of general weakness, blood related complications like blood deficiency, blood purification and for the treatment of symptoms related to sickle cell disease (SCD). SCD is a genetic disease with life threatening complications. In the absence of any drugs without any side effects, the alternative plant based therapies that may either reduce/ reverse the sickling of the red blood cells can be safe and effective therapeutic agents. We evaluated W. fruticosa extracts for phytoconstituents, anti-oxidant and anti-inflammatory properties. Anti-sickling properties of the extracts were evaluated by estimation of reverse sickling, polymerization inhibition and osmotic fragility assays. Chemical profiling of the methanol extract was done using LC-MS analysis. Phytochemicals such as alkaloids, steroids, tannin, and saponins were present in all the extracts. Methanol extract displayed maximum reversal (66 ± 1%) of sickled Red blood Cells (RBC) and significantly inhibited Hb polymerization. The hexane and methanol extracts led to minimum hemolysis of sickled RBC in the osmotic fragility assays. Total tannin (365 ± 2.4 TAE) content was highest in acetone extract, while the total flavonoid and phenolic content (156.9 ± 2.0 QE) and (113.7 ± 0.7 GAE) were highest in methanol extract. The methanol extract displayed minimum IC50 (8.1 ± 1.5) in 2, 2-diphenylpicrylhydrazyl (DPPH) while the acetone extract had minimum IC50 (215.8 ± 5.7) in 2,2′-azino-bis 3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assay. The hexane extract displayed maximum Ferric reducing anti-oxidant power (FRAP) value (1.5 ± 0.5 mM Fe(II)/mg dry weight) that were higher than methanol and aqueous extracts (1.45 ± 0.1, 1.45 ± 0.05 mM Fe(II)/mg dry weight). The methanol extract provided maximum RBC protection from hemolysis (73.8 ± 0.8%). Maximum Lipoxygenase (LOX) inhibition was observed by the acetone and methanol extracts at 400 μg/mL while the hexane extract displayed maximum Xanthine oxidase (XO) inhibition (57.0 ± 0.5%). LC-MS profiling of the methanol extract identified several secondary metabolites that might be responsible for the observed activities. The results validate the traditional use of W. fruticosa and present us with potential compounds for further development of novel anti sickling agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号