首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
We report the spectrophotometric determination of total polyphenols, flavonoids, glucosinolates and antioxidant activity in seeds, seedlings and leaves of Tuscan black kale. The highest content of phytochemicals was observed in 10 days sprouts and antioxidant activity was maximum in 2, 4 days seedlings. Identification and characterisation of phytochemicals were performed by mass spectrometry (MS), high resolution and tandem MS with electrospray ionisation mode. Low-molecular-weight metabolites were evidenced in seeds while metabolites at high m/z range were detected in cotyledons and leaves. MS spectra evidenced different phenolic compounds (flavonoid caffeoyl glucose, hydroxycinnamic acid sinapine) and glucosinolates (glucoerucin, glucobrassicin and glucoraphanin) in function of developmental stage; galactolipids ω3 and ω6 were observed in leaves. Identification of stages with the highest phytochemicals content encourages the consumption of black kale sprouts and young leaves. Our research can support food and pharmaceutical industries for production of health promoting products from black kale.  相似文献   

2.
The bacteria of the genus Curtobacterium are usually seen as plant pathogen, but some species have been identified as endophytes of different crops and could as such present a potential for disease control and plant growth promotion. We have therefore applied the desorption electrospray ionization mass spectrometry imaging (DESI‐MSI) in the direct analysis of living Curtobacterium sp. strain ER1/6 colonies to map the surface metabolites, and electrospray ionization tandem mass spectrometry (ESI‐MS/MS) for characterization of these compounds. Several colony‐associated metabolites were detected. The ESI‐MS/MS showed characteristic fragmentations for phospholipids including the classes of glycerophosphocholine, glycerophosphoglycerol, and glycerophosphoinositol as well as several fatty acids. Although a secure identification was not obtained, many other metabolites were also detected for this bacteria species. Principal component analysis showed that fatty acids were discriminatory for Curtobacterium sp. ER1/6 during inoculation on periwinkle wilt (PW) medium, whereas phospholipids characterize the bacterium when grown on the tryptic soy agar (TSA) medium.  相似文献   

3.
In this article, the effect of spray solvent on the analysis of selected lipids including fatty acids, fat‐soluble vitamins, triacylglycerols, steroids, phospholipids, and sphingolipids has been studied by two different ambient mass spectrometry (MS) methods, desorption electrospray ionization‐MS (DESI‐MS) and desorption atmospheric pressure photoionization‐MS (DAPPI‐MS). The ionization of the lipids with DESI and DAPPI was strongly dependent on the spray solvent. In most cases, the lipids were detected as protonated or deprotonated molecules; however, other ions were also formed, such as adduct ions (in DESI), [M‐H]+ ions (in DESI and DAPPI), radical ions (in DAPPI), and abundant oxidation products (in DESI and DAPPI). DAPPI provided efficient desorption and ionization for neutral and less polar as well as for ionic lipids but caused extensive fragmentation for larger and more labile compounds because of a thermal desorption process. DESI was more suitable for the analysis of the large and labile lipids, but the ionization efficiency for less polar lipids was poor. Both methods were successfully applied to the direct analysis of lipids from pharmaceutical and food products. Although DESI and DAPPI provide efficient analysis of lipids, the multiple and largely unpredictable ionization reactions may set challenges for routine lipid analysis with these methods. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Desorption ElectroSpray Ionization (DESI) ‐ Orbitrap Mass Spectrometry (MS) was evaluated as a new tool for the characterization of various industrial synthetic polymers (poly(ethylene glycol), poly(propylene glycol), poly(methylmethacrylate), poly(dimethylsiloxane)) and copolymers, with masses ranging from 500 g.mol−1 up to more than 20 000 g.mol−1. Satisfying results in terms of signal stability and sensitivity were obtained from hydrophobic surfaces (HTC Prosolia) with a mixture water/methanol (10/90) as spray solvent in the presence of sodium salt. Taking into account the formation of multiplied charged species by DESI‐MS, a strategy based on the use of a deconvolution software followed by the automatic assignment of the ions was described allowing the rapid determination of Mn, Mw and PDI values. DESI‐Orbitrap MS results were compared to those obtained from matrix‐assisted laser desorption/ionization‐ time‐of‐flight MS and gel permeation chromatography. An application of DESI‐Orbitrap MS for the detection and identification of polymers directly from cosmetics was described. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Salvia divinorum is widely cultivated in the US, Mexico, Central and South America and Europe and is consumed for its ability to produce hallucinogenic effects similar to those of other scheduled hallucinogenic drugs, such as LSD. Salvinorin A (SA), a kappa opiod receptor agonist and psychoactive constituent, is found primarily in the leaves and to a lesser extent in the stems of the plant. Herein, the analysis of intact S. divinorum leaves for SA and of acetone extracts separated using thin layer chromatography (TLC) is demonstrated using desorption electrospray ionization (DESI) mass spectrometry. The detection of SA using DESI in the positive ion mode is characterized by several ions associated with the compound – [M+H]+, [M+NH4]+, [M+Na]+, [2M+NH4]+, and [2M+Na]+. Confirmation of the identity of these ions is provided through exact mass measurements using a time‐of‐flight (ToF) mass spectrometer. The presence of SA in the leaves was confirmed by multi‐stage tandem mass spectrometry (MSn) of the [M+H]+ ion using a linear ion trap mass spectrometer. Direct analysis of the leaves revealed several species of salvinorin in addition to SA as confirmed by MSn, including salvinorin B, C, D/E, and divinatorin B. Further, the results from DESI imaging of a TLC separation of a commercial leaf extract and an acetone extract of S. divinorum leaves were in concordance with the TLC/DESI‐MS results of an authentic salvinorin A standard. The present study provides an example of both the direct analysis of intact plant materials for screening illicit substances and the coupling of TLC and DESI‐MS as a simple method for the examination of natural products. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
The direct analysis of pharmaceutical formulations and active ingredients from non‐bonded reversed‐phase thin layer chromatography (RP‐TLC) plates by desorption electrospray ionisation (DESI) combined with ion mobility mass spectrometry (IM‐MS) is reported. The analysis of formulations containing analgesic (paracetamol), decongestant (ephedrine), opiate (codeine) and stimulant (caffeine) active pharmaceutical ingredients is described, with and without chromatographic development to separate the active ingredients from the excipient formulation. Selectivity was enhanced by combining ion mobility and mass spectrometry to characterise the desorbed gas‐phase analyte ions on the basis of mass‐to‐charge ratio (m/z) and gas‐phase ion mobility (drift time). The solvent composition of the DESI spray using a step gradient was varied to optimise the desorption of active pharmaceutical ingredients from the RP‐TLC plates. The combined RP‐TLC/DESI‐IM‐MS approach has potential as a rapid and selective technique for pharmaceutical analysis by orthogonal gas‐phase electrophoretic and mass‐to‐charge separation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Desorption electrospray ionization mass spectrometry (DESI‐MS) is employed in the forensic analysis of chemical components present in condoms and imaging of latent fingerprints as circumstantial evidence of sexual assault. Polymers such as nonoxynol‐9, polyethylene glycol, and polydimethylsiloxane, as well as small molecules additives such as N‐methylmorpholine, N‐octylamine, N,N‐dibutyl formamide, and isonox 132, commonly used in lubricated condom formulations, were successfully characterized by DESI. The results suggest that DESI‐MS is useful for identification of this type of evidence, and it has advantages over conventional extractive techniques, in terms of speed of analysis and ease of use. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Most pesticides, herbicides and other plant treatment agents are applied to the crop surface. Direct mass spectrometric methods, such as desorption electrospray ionization (DESI), offer new ways to analyze plant samples directly and rapidly. A strategy for the development and optimization of a DESI method for the direct determination of chemicals on complex surfaces is described. Chlorpropham (CP) was applied to potato surfaces as an example for a crop protection agent and analyzed using a self‐made DESI source. Aspects such as instrument selectivity, sensitivity and reproducibility were investigated. The MS4 fragmentation pattern of CP was analyzed to achieve the necessary detection selectivity, and is discussed in detail. Similar fragmentation was found in the ESI and DESI mass spectra, indicating that the mechanisms of ESI and DESI are closely related. A DESI method for semi‐quantification of CP on potatoes was developed. Detection limits of 6.5 µg/kg were found using MS/MS. The reproducibility, in the range of 12% (signal variation), appears to be sufficient for semi‐quantitative measurements. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Desorption electrospray ionization mass spectrometry (DESI‐MS) and easy ambient sonic‐spray ionization mass spectrometry (EASI‐MS) are employed here in the forensic analysis of chemical compounds found in condoms and relative traces, and their analytical performances are compared. Statistical analysis of data obtained from mass spectra only was applied in order to obtain classification rules for distinguishing ten types of condoms. In particular, two supervised chemometric techniques [linear discriminant analysis (LDA) and soft independent modeling of class analogy (SIMCA)] were carried out on absolute and relative intensity values to test the performances of statistical models in terms of predictive capacity. The achieved classification of samples was excellent because of the high prediction percentages of the method used both for DESI and EASI mass spectrometry analyses, confirming these two as potential ambient ionization techniques for forensic analyses in case of sexual assault crimes. EASI‐MS showed 99% prediction ability for LDA using relative data and 100% prediction ability for SIMCA using both absolute and relative ones, while DESI showed 94% prediction ability for both LDA and SIMCA. The absence of any sample preparation technique gives advantages in terms of sample preservation and reduced contamination, allowing successive analyses to be performed on the same sample by other techniques. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Desorption electrospray ionisation mass spectrometry (DESI‐MS) was recently reported for the direct analysis of sample media without the need for additional sample handling. During the present study, direct analysis of solid‐phase microextraction (SPME) fibers by DESI‐MS/MS was evaluated with indoor office media that might be collected during a forensic investigation, including wall surfaces, office fabrics, paper products and Dacron swabs used for liquid sampling. Media spiked at the µg/g level with purified chemical warfare agents and a complex munitions grade sample of tabun, to simulate the quality of chemical warfare agent that might be used for terrorist purposes, were successfully analysed by DESI‐MS/MS. Sulfur mustard, a compound that has not been successfully analysed by electrospray mass spectrometry in the past, was also sampled using a SPME fiber and analysed for the first time by DESI‐MS/MS. Finally, the overall analytical approach involving SPME headspace sampling and DESI‐MS analysis was evaluated during a scenario‐based training live agent exercise. A sarin sample collected by the military was analysed and confirmed by DESI‐MS in a mobile laboratory under realistic field conditions. Copyright © 2007 Crown in the right of Canada. Published by John Wiley & Sons, Ltd.  相似文献   

11.
Recently in Canada and some states of the United States, marijuana (cannabis) has become fully legalized and regulated, for both medical and recreational purposes. This fact is going to make cannabis products such as edibles even more popular than ever before. Therefore, it is assumed that there will be a high demand for analytical methods, which are accurate and sensitive enough to be used in different forensic and pharmaceutical cannabis–related applications. Cannabis derivatives have an extreme range and number of constituents with possible interactions with one another. Thus, this characteristic leads to their vast and highly complex chemistry, which requires robust analytical tools to be able to precisely and accurately quantify and qualify them. We developed and validated an analytical method using desorption electrospray ionization (DESI)–mass spectrometry (MS) to accurately detect, characterize, and quantify cannabinoids and also offer an easy, cost‐effective, and reliable technique, which can be performed in a short time for infused edibles in complex matrices such as chocolate. We evaluated a quantitative analysis of tetrahydrocannabinol (THC) in cannabis‐infused chocolate with thin‐layer chromatography (TLC)–DESI‐MS and QuEChERS extraction method. Both techniques of TLC and QuEChERS are cost‐effective and can be run in short time.  相似文献   

12.
Quaternary protoberberine alkaloids belong to a pharmaceutically important class of isoquinoline alkaloids associated with bactericidal, fungicidal, insecticidal and antiviral activities. As traditional medicine gains wider acceptance, quick and robust analytical methods for the screening and analysis of plants containing these compounds attract considerable interest. Thin‐layer chromatography (TLC) combined with matrix‐assisted laser desorption/ionization mass spectrometry (MALDI‐MS) is a powerful technique but suffers from dilution of the TLC bands resulting in decreased sensitivity and masking of signals in the low‐mass region both due to addition of matrix. This study integrates for the first time conventional silica gel TLC and laser desorption ionization mass spectrometry (LDI‐MS) thus eliminating the need for any external matrix. Successful separation of berberine (Rf = 0.56) and palmatine (Rf = 0.46) from Berberis barandana including their identification by MS are demonstrated. Furthermore, a robust electrospray ionization (ESI)‐MS method utilizing residual sample from TLC for quantification of berberine applying selected reaction monitoring and standard addition method is presented. The amount of berberine in the plant root prepared for the study was determined to be 0.70% (w/w). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
基于高速逆流色谱(HSCCC)技术从玛咖中分离制备出两种芥子油苷,苄基芥子油苷(glucotropaeolin, GTL)和甲氧基苄基芥子油苷(glucolimnanthin, GLI)。使用正交设计试验对分离条件进行优化,采用高分辨质谱对制备的组分进行鉴定,采用高效液相色谱法(HPLC)对组分进行定量分析。确定了两个组分GTL与GLI的HSCCC最佳分离条件:溶剂系统为正丁醇-乙腈-200 g/L硫酸铵溶液(1:0.5:2.4, v/v/v),上相为固定相,下相为流动相,流动相流速2 mL/min,主机转速900 r/min,从玛咖根粗提物中一次性分离得到157.72 mg/kg纯度为97.9%的苄基芥子油苷和31.93 mg/kg的甲氧基苄基芥子油苷,固定相保留率达57.6%。该方法成本低,简便易行,样品损失量小,可大量循环进样制备。  相似文献   

14.
Chemical profiling of barley (Hordeum vulgare) leaves was demonstrated using direct and indirect desorption electrospray ionization (DESI) imaging mass spectrometry. Direct DESI analysis of the untreated leaves was not possible despite a significant content of hydroxynitrile glucosides known to reside in the epidermis of the leaves. Instead, the epidermis was stripped off the leaves, thus allowing direct DESI imaging to be performed on the back of the epidermis. Furthermore, indirect DESI imaging was performed by making imprints in porous Teflon of the intact leaves as well as of the stripped epidermis. The DESI images reveal accumulation of hydroxynitrile glucosides in the leaf epidermis, homogeneously distributed throughout the surface. The indirect DESI approach enables relative quantitation, confirming variations of hydroxynitrile glucosides content in primary leaves of three different cultivars of barley seedlings. The study presents an example of how to overcome the morphological barriers from the plant surface and perform rapid and repeatable DESI imaging. In addition, a comparison is made of direct and indirect DESI imaging, contributing to the characterization of the recently developed method of indirect DESI imaging of plant material via porous Teflon imprints.  相似文献   

15.
We have studied the matrix effect within direct analysis of benzodiazepines and opioids from urine with desorption electrospray ionization-mass spectrometry (DESI-MS) and desorption atmospheric pressure photoionization-mass spectrometry (DAPPI-MS). The urine matrix was found to affect the ionization mechanism of the opioids in DAPPI-MS favoring proton transfer over charge exchange reaction. The sensitivity for the drugs in solvent matrix was at the same level with DESI-MS and DAPPI-MS (LODs 0.05–6 μg mL−1) but the decrease in sensitivity due to the urine matrix was higher with DESI (typically 20–160-fold) than with DAPPI (typically 2–15-fold) indicating better matrix tolerance of DAPPI over DESI. Also in MS/MS mode, DAPPI provided better sensitivity than DESI for the drugs in urine. The feasibility of DAPPI-MS/MS was then studied in screening the same drugs from five authentic, forensic post mortem urine samples. A reference measurement with gas chromatography-mass spectrometry (GC–MS) (including pretreatment) revealed 16 findings from the samples, whereas with DAPPI-MS/MS after sample pretreatment, 15 findings were made. Sample pretreatment was found necessary, since only eight findings were made from the same samples untreated.  相似文献   

16.
Desorption electrospray ionization (DESI) mass spectrometry has been implemented on a commercial ion‐trap mass spectrometer and used to optimize mass spectrometric conditions for DNA nucleobases: adenine, cytosine, thymine, and guanine. Experimental parameters including spray voltage, distance between mass spectrometer inlet and the sampled spot, and nebulizing gas inlet pressure were optimized. Cluster ions including some magic number clusters of nucleobases were observed for the first time using DESI mass spectrometry. The formation of the cluster species was found to vary with the nucleobases, acidification of the spray solvent, and the deposited sample amount. All the experimental results can be explained well using a liquid film model based on the two‐step droplet pick‐up mechanism. It is further suggested that solubility of the analytes in the spray solvent is an important factor to consider for their studies by using DESI. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Talaty N  Takáts Z  Cooks RG 《The Analyst》2005,130(12):1624-1633
Desorption electrospray ionization (DESI) mass spectrometry is applied to the in situ detection of alkaloids in the tissue of poison hemlock (Conium maculatum), jimsonweed (Datura stramonium) and deadly nightshade (Atropa belladonna). The experiment is carried out by electrospraying micro-droplets of solvent onto native or freshly-cut plant tissue surfaces. No sample preparation is required and the mass spectra are recorded under ambient conditions, in times of a few seconds. The impact of the sprayed droplets on the surface produces gaseous ions from organic compounds originally present in the plant tissue. The effects of operating parameters, including the electrospray high voltage, heated capillary temperature, the solvent infusion rate and the carrier gas pressure on analytical performance are evaluated and optimized. Different types of plant material are analyzed including seeds, stems, leaves, roots and flowers. All the previously reported alkaloids have been detected in C. maculatum, while fifteen out of nineteen known alkaloids for D. stramonium and the principal alkaloids of A. belladonna were also identified. All identifications were confirmed by tandem mass spectrometry. Results obtained show similar mass spectra, number of alkaloids, and signal intensities to those obtained when extraction and separation processes are performed prior to mass spectrometric analysis. Evidence is provided that DESI ionization occurs by both a gas-phase ionization process and by a droplet pick-up mechanism. Quantitative precision of DESI is compared with conventional electrospray ionization mass spectrometry (after sample workup) and the RSD values for the same set of 25 dicotyledonous C. maculatum seeds (one half of each seed analyzed by ESI and the other by DESI) are 9.8% and 5.2%, respectively.  相似文献   

18.
Desorption electrospray ionization mass spectrometry (DESI‐MS) requires little to no sample preparation and has been successfully applied to the study of biologically significant macromolecules such as proteins. However, DESI‐MS and other ambient methods that use spray desorption to process samples during ionization appear limited to smaller proteins with molecular masses of 25 kDa or less, and a decreasing instrumental response with increasing protein size has often been reported. It has been proposed that this limit results from the inability of some proteins to easily desorb from the surface during DESI sampling. The present study investigates the apparent mass dependence of the instrumental response observed during the DESI‐MS analysis of proteins using spray desorption collection and reflective electrospray ionization. Proteins, as large as 66 kDa, are shown to be quantitatively removed from surfaces by using spray desorption collection. However, incomplete dissolution and the formation of protein–protein and protein–contaminant clusters appear to be responsible for the mass‐dependent loss in sensitivity for protein analysis. Alternative ambient mass spectrometry approaches that address some of the problems encountered by spray desorption techniques for protein analysis are also discussed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
Since its introduction, desorption electrospray ionization (DESI) mass spectrometry (MS) has been mainly applied in pharmaceutical and forensic analysis. We expect that DESI will find its way in many different fields, including food analysis. In this review, we summarize DESI developments aimed at controlling chemical contaminants in food. Data are given for analysis of pesticides, natural toxins, veterinary drugs, food additives, adulteration, packaging migrants, and for applications of food forensics.We discuss practical aspects of DESI, including its strengths and weaknesses, highlighting specific features of performing chemical reactions during the desorption/ionization process in order to enhance sensitivity and selectivity.Finally, we discuss the position of DESI with respect to current food-analysis regulation and legislation. We envisage that DESI can be a rapid, qualitative or semi-quantitative, screening tool, ultimately being applied on site prior to sampling and transport of samples to food-control laboratories.  相似文献   

20.
The position of the surface to be analyzed relative to the sampling orifice or capillary into the mass spectrometer has been known to dramatically affect the observed signal levels in desorption electrospray ionization mass spectrometry (DESI‐MS). In analyses of sample spots on planar surfaces, DESI‐MS signal intensities as much as five times greater were routinely observed when the bottom of the sampling capillary was appropriately positioned beneath the surface plane (‘edge sampling’) compared with when the capillary just touched the surface. To take advantage of the optimum ‘edge sampling’ geometry and to maximize the number of samples that could be analyzed in this configuration, a rotational sample stage was integrated into a typical DESI‐MS setup. The rapid quantitative determination of caffeine in two diet sport drinks spiked with an isotopically labeled internal standard demonstrated the utility of this approach. Published in 2008 by John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号