首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nitrogen-doped TiO2 powders were successfully prepared by a wet method, i.e., a micro-emulsion-hydrothermal method, in different acid environments. Several characterization techniques, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and UV-visible diffuse reflectance spectra, were combined to determine the crystal phase, concentration and chemical states of the nitrogen doped in TiO2. The high photocatalytic activity of the nitrogen-doped TiO2 was evaluated through the decomposition of rhodanmine B under visible light irradiation. It was suggested that the doped nitrogen formed oxynitride (NO) and produced impurity states at higher above the valence band of TiO2. Therefore, the nitrogen doping could enhance the response of photocatalyst to the visible light and improve the photocatalytic activity because of the narrowing of band gap of TiO2.  相似文献   

2.
刘允昌  邢明阳  张金龙 《催化学报》2014,35(9):1511-1519
以乙醇为碳源,采用操作简单的真空活化法一步实现对TiO2的Ti3+与C的共掺杂改性,TiO2用X衍线衍射、紫外-可见光谱、顺磁共振、X射线光电子能谱和红外光谱等手段表征了催化剂的结构、组成、光学性质. 结果表明, 经Ti3+与C共掺杂改性后的催化剂表现出高的可见光降解甲基橙活性. 复合在催化剂表面的石墨可以增强催化剂对可见光的响应范围,而Ti3+与氧缺陷形成的掺杂能级则可以提高光生电子的迁移效率. 实验表明,两者之间的协同作用促进了其可见光催化活性的提高.  相似文献   

3.
In this study, we report the synthesis of hierarchical chlorine-doped rutile TiO2 spherical clusters of nanorods photocatalyst on a large scale via a soft interface approach. This catalyst showed much higher photocatalytic activity than the famous commercial titania (Degussa P25) under visible light (λ>420 nm). The resulting sample was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), nitrogen adsorption, X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy, 1H solid magic-angle spinning nuclear magnetic resonance (MAS-NMR) and photoluminescence spectroscopy. On the basis of characterization results, we found that the doping of chlorine resulted in red shift of absorption and higher surface acidity as well as crystal defects in the photocatalyst, which were the reasons for high photocatalytic activity of chlorine-doped TiO2 under visible light (λ>420 nm). These hierarchical chlorine-doped rutile TiO2 spherical clusters of nanorods are very attractive in the fields of environmental pollutants removal and solar cell because of their easy separation and high activity.  相似文献   

4.
The strong band-to-band absorption of photocatalysts spanning the whole visible-light region (400–700 nm) is critically important for solar-driven photocatalysis. Although it has been actively and widely used as a photocatalyst for various reactions in the past four decades, TiO2 has a very poor ability to capture the whole spectrum of visible light. In this work, by controlling the spatially homogeneous distribution of boron and nitrogen heteroatoms in anatase TiO2 microspheres with a predominance of high-energy {001} facets, a strong visible-light absorption spectrum with a sharp edge beyond 680 nm has been achieved. The red TiO2 obtained with homogeneous doping of boron and nitrogen shows no increase in defects like Ti3+ that are commonly observed in doped TiO2. More importantly, it has the ability to induce photocatalytic water oxidation to produce oxygen under the irradiation of visible light beyond 550 nm and also the photocatalytic reduction of water to produce hydrogen under visible light. These results demonstrate the great promise of using red TiO2 for visible-light photocatalytic water splitting and also reveal an attractive strategy for realizing the wide-spectrum visible-light absorption of wide-band-gap oxide photocatalysts.  相似文献   

5.
The thin films of TiO2 doped by Sn or Nb were prepared by sol–gel method under process control. The effects of Sn and Nb doping on the structural, optical and photo-catalytic properties of applied thin films have been studied by X-ray diffraction (XRD) high resolution transmission electron microscopy and UV–Vis absorption spectroscopy. Surface chemical state of thin films was examined by atomic X-ray photoelectron spectroscopy. XRD results suggest that adding impurities has a great effect on the crystallinity and particle size of TiO2. Titania rutile phase formation in thin film was promoted by Sn4+ addition but was inhibited by Nb5+ doping. The activity of the photocatalyst was evaluated by photocatalytic degradation kinetics of aqueous methylene blue under UV and Visible radiation. The results show that the photocatalytic activity of the Sn-doped TiO2 thin film have a larger degradation efficiency than Nb-doped TiO2 under visible light, but under UV light photocatalytic activity of the Nb-doped TiO2 thin film is better.  相似文献   

6.
Sulfur and copper codoped TiO2 nanoparticles were prepared by sol-hydrothermal process. And the samples were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectra analysis, scanning electron microscopy, Brunauer Emmett Teller analysis, UV–vis diffuse reflectance spectroscopy, X-ray photoelectron spectra and X-ray fluorescence analysis. It was found that the S, Cu-codoped TiO2 became amorphous with the increase of Cu content, and copper on the surface of TiO2 existed in the oxidation state of Cu(II) while S in the form of S6+ species. And the codoped particles had higher surface area, smaller particle size, stronger spectral response in visible region compared with pure TiO2. The effects of doping amount in a wide range, catalyst dosage, and recycle on the photocatalytic activity of the codoped catalysts were investigated with Acid Orange 7 as the model compound under visible light illumination (λ > 447 nm). The results showed that S (2.0 %), Cu (5.0 %) codoped TiO2 had the highest visible light photocatalytic activity and good reusability performance. The kinetic study showed that this photocatalytic process coincided with the Langmuir–Hinshelwood pseudo first order reaction model.  相似文献   

7.
During chemical vapor synthesis of TiO2 nanopowders, nitrogen atoms were doped into the crystal lattice of TiO2. The nitrogen atoms were predominantly incorporated substitutionally in the crystal lattice of TiO2 nanopowders up to the doping level of 1.25 mol% nitrogen, whereas they were in both interstitial and substitutional sites over about 1.43 mol% nitrogen. From the photocatalytic activity of nitrogen-doped TiO2 estimated by decomposition of methylene blue under visible light, it was found that the substitutional nitrogen anions appearing at the low level doping was beneficial to its photocatalytic activity, whereas the interstitial ones appearing at the high level doping over 1.25 mol% nitrogen were not. The improved photocatalytic activity due to the substitutionally doped nitrogen was attributed to band gap narrowing which was confirmed by the studies of XPS, near edge X-ray absorption fine structure, and UV–Vis absorption.  相似文献   

8.
Bare TiO2 and Cu-doped TiO2 nanoparticles with different nominal doping amounts of Cu ranging from of 0.5 to 5.0 mol% were synthesized using the modified sol–gel method. The samples were physically characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, Brunauer–Emmett–Teller-specific surface area, UV–Vis diffuse reflectance spectroscopy, zeta potential, X-ray photoelectron spectroscopy, inductively coupled plasma, and photoluminescence techniques. The Cu-doped TiO2 exhibited good photocatalytic activity in mineralization of oxalic acid and formic acid under visible light irradiation. Photomineralization of oxalic and formic acids under visible light irradiation revealed greatly enhanced photoactivity exhibited by the 2.0 mol% Cu-doped TiO2 photocatalyst compared to bare TiO2 . The enhanced photocatalytic performance arises from copper ion doping in the TiO2 structure, leading to an extended photoresponsive range, enhanced photogenerated charge separation, and transportation efficiency.  相似文献   

9.
A series of boron and sulfur co-doped titanium dioxide (TiO2) photocatalysts were prepared by a sol-gel method using boric acid, thiourea and tetrabutyl titanate [Ti(OC4H9)4] as precursors. The photoabsorbance of as-prepared photocatalysts was measured by UV–Vis diffuse reflectance spectroscopy (DRS), and its microstructure was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and N2 adsorption-desorption measurements. The prepared photocatalysts consisted of the anatase phase mainly in the form of spherical particles. The photocatalytic performance was studied by photodegradation of methyl blue (MB) in water under UV and visible light irradiation. The calcination temperature and the codoping content influenced the photoactivity. The synergistic effect of boron and sulfur co-doping played an important role in improving the photocatalytic activity. In addition, the possibility of cyclic usage of codoped TiO2 was also confirmed, the photocatalytic activity of TiO2 remained above 91% of that of the fresh sample after being used four times. It was shown that the co-doped TiO2 could be activated by visible light and could thus be potentially applied for the treatment of water contaminated by organic pollutants.  相似文献   

10.
Ag+ and La3+ surface codoped TiO2 films were successfully prepared by the improved sol–gel and doping processes. The as-prepared specimens were characterized using differential thermal analysis-thermogravimetry (DTA–TG), X-ray diffraction (XRD), high-resolution field emission scanning electron microscopy (FE-SEM), X-ray energy dispersive spectroscopy (EDS), Brunauer–Emmett–Teller (BET) surface area, Photoluminescence spectrum (PL) and UV–vis diffuse reflectance spectroscopy. The photocatalytic activities of the films were evaluated by degradation of an organic dye in aqueous solution. The results of XRD, FE-SEM and BET analyses indicated that the TiO2 films were composed of nano-particles or aggregates with a size of less than 10 nm. With the codoping of Ag+ and La3+, TiO2 films with high photocatalytic activity and clearly responsive to the visible light were obtained. The improvement mechanism by ions doping was also discussed.  相似文献   

11.
Fe-doped TiO2 hollow spheres (Fe-THs) were synthesized by sol–gel process using carbon spheres as templates. The prepared samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV–vis diffuse reflectance spectrum (DRS), N2 adsorption–desorption isotherms, Electron paramagnetic resonance (EPR) spectroscopy and Photoluminescence emission spectroscopy (PL). UV–vis spectra showed that Fe3+ doping could extend the absorption edge to the visible region. EPR spectra showed that Fe3+ was incorporated into the crystal lattice of TiO2, which could inhibit the recombination of photo-induced electron–hole pairs and improve the photocatalytic activity. The photocatalytic activities of the prepared samples were evaluated for the degradation of dye Reactive Brilliant Red X-3B (C.I. reactive red 2) under visible light irradiation. The results indicated that Fe3+ doping sample showed the highest photocatalytic activity with an optimal doping concentration of 0.50 wt%. The recycle ability of the Fe-THs was also investigated. After 5 cycles, the degradation rate was still higher than 90%, decreased by only 6.36% compared to the first cycle. Moreover, in order to characterize the electron-transferring efficiency in the process of photocatalysis reaction, a photocurrent-time spectrum was examined by anodic photocurrent response.  相似文献   

12.
Boron-doped TiO2 was prepared by the sol-gel method and by grinding TiO2 powder with a boron compounds (boric acid and boric acid triethyl ester followed by calcinations at temperature range 200 to 600°C. Three types of pristine TiO2: ST-01 (Ishihara Sangyo Ltd., Japan; 300 m2/g), P25 (Degussa, Germany, 50 m2/g), A11 (Police S.A., Poland 12 m2/g) were used in grinding procedure. The photocatalytic activity of obtained powders in visible light was estimated by measuring the decomposition rate of phenol (0.21 mmol/dm3) in an aqueous solution. The photocatalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron emission spectroscopy (XPS), UV-VIS absorption and BET surface area measurements. The best photoactivity under visible light was observed for B-TiO2 modified with 2 wt% of boron prepared by grinding ST-01 with dopant followed by calcinations at 400°C. This photocatalyst contains 16.9 at.% of carbon and 6.6 at.% of boron in surface layer and its surface area is 192 m2/g.  相似文献   

13.
采用溶胶-超声辐照技术同步合成了生物质C-N-P自掺杂TiO_2复合催化剂,通过X射线光电子能谱(XPS)、X射线衍射(XRD)、扫描电子显微镜(FESEM)、紫外-可见漫反射光谱(UV-Vis-DRS)及光致发光光谱(PL)对样品进行了表征.以亚甲基兰(MB)为目标污染物,研究了C-N-P共掺杂TiO_2的可见光光催化性能.实验结果表明,在可见光照射下,光催化反应时间为2 h时,C-N-P共掺杂TiO_2复合催化剂对亚甲基兰的降解效率最高可达9 8.5%;相比纯TiO_2,C-N-P共掺杂TiO_2复合催化剂的比表面积增大,吸收边带红移,禁带宽度减小,相变温度升高,光生载流子复合率降低.  相似文献   

14.
Fe3+-doped TiO2 composite nanoparticles with different doping amounts were successfully synthesized using sol-gel method and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and ultravioletvisible spectroscopy (UV-Vis) diffuse reflectance spectra (DRS). The photocatalytic degradation of methylene blue was used as a model reaction to evaluate the photocatalytic activity of Fe3+/TiO2 nanoparticles under visible light irradiation. The influence of doping amount of Fe3+ (ω: 0.00%–3.00%) on photocatalytic activities of TiO2 was investigated. Results show that the size of Fe3+/TiO2 particles decreases with the increase of the amount of Fe3+ and their absorption spectra are broaden and absorption intensities are also increased. Doping Fe3+ can control the conversion of TiO2 from anatase to rutile. The doping amount of Fe3+ remarkably affects the activity of the catalyst, and the optimum efficiency occurs at about the doping amount of 0.3%. The appropriate doping of Fe3+ can markedly increase the catalytic activity of TiO2 under visible light irradiation. __________ Translated from Journal of Northwest Normal University (Natural Science), 2006, 42(6): 55–56 [译自: 西北师范大学学报(自然科学版)]  相似文献   

15.
于新娈  王岩  孟祥江  杨建军 《催化学报》2013,34(7):1418-1428
在空气气氛和N2中热处理表面均匀分散有尿素和氯化钯的纳米管钛酸,制备了两个系列Pd/N共掺杂的TiO2光催化剂,并对所得样品进行了X射线衍射、透射电镜、X射线光电子能谱、紫外-可见漫反射光谱、荧光光谱和电子自旋共振等表征.结果表明,焙烧气氛对样品的形貌、晶体结构、光谱吸收、生成的氧空位浓度和可见光光催化性能的影响很大,其中在空气气氛中制备的样品光催化性能优于在N2中制备的样品.在可见光(λ≥420nm)照射下,以丙烯为模型污染物考察了样品的光催化活性,发现在空气中400℃下焙烧的样品具有最佳的可见光催化活性.另外,讨论了Pd/N共掺杂TiO2光催化剂具有可见光响应的机理,认为掺杂的Pd/N元素和制备过程中生成的氧空位是影响可见光催化性能的重要因素.  相似文献   

16.
陈其凤  徐耀  孙予罕 《化学学报》2010,68(4):301-308
为了更好地利用太阳光和提高二氧化钛的光催化性能,以钛酸四正丁酯、正硅酸乙酯、六水合硝酸镍为原料,在高压釜中140℃非水溶剂热反应,所得材料经400℃焙烧制得镍硅共掺杂的二氧化钛光催化剂.所得材料用X射线衍射、氮吸附、透射电镜、X射线光电子能谱、傅里叶变换红外光谱、紫外漫反射等测试手段分析,结果显示所有样品均为锐钛矿型二氧化钛,Si和Ni均掺杂到TiO2体相中,样品具有较大的比表面积,其最大达303.3m2·g-1.在可见光照射下,以降解罗丹明-B为探针反应研究其可见光催化性能,与未掺杂和镍掺杂的二氧化钛相比较,共掺杂的二氧化钛具有更高的可见光催化性能,当Ni/Ti和Si/Ti的物质的量的比分别为0.01和0.20时,可见光催化性能最好.可见光催化性能的提高归因于镍和硅的协同作用.  相似文献   

17.
High aspect ratio cobalt doped ZnO nanowires showing strong photocatalytic activity and moderate ferromagnetic behaviour were successfully synthesized using a solvothermal method and characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), vibrating sample magnetometry (VSM) and UV–visible absorption spectroscopy. The photocatalytic activities evaluated for visible light driven degradation of an aqueous methylene orange (MO) solution were higher than for Co doped ZnO nanoparticles at the same doping level and synthesized by the same synthesis route. The rate constant for MO visible light photocatalytic degradation was 1.9·10−3 min−1 in case of nanoparticles and 4.2·10−3 min−1 in case of nanowires. We observe strongly enhanced visible light photocatalytic activity for moderate Co doping levels, with an optimum at a composition of Zn0.95Co0.05O. The enhanced photocatalytic activities of Co doped ZnO nanowires were attributed to the combined effects of enhanced visible light absorption at the Co sites in ZnO nanowires, and improved separation efficiency of photogenerated charge carriers at optimal Co doping.  相似文献   

18.
N, B, Si-tridoped mesoporous TiO2, together with N-doped, N, B-codoped and N, Si-codoped TiO2, was prepared by a modified sol–gel method. The samples were characterized by wide-angle X-ray diffraction (WAXRD), N2 adsorption–desorption, transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, UV–visible adsorbance spectra (UV–vis) and X-ray photoelectron spectra (XPS). The N, B, Si-tridoped mesoporous TiO2 showed small crystallite size, large specific surface area (350 m2/g), uniform pore distribution (3.2 nm) and strong absorption in the visible light region. The photocatalytic activities of the samples were evaluated by the photodegradation of 2,4-dichlorophenol (2,4-DCP) aqueous solution. The N, B, Si-tridoping sample exhibited much higher photocatalytic activity compared with other synthesized photocatalysts. The high activity could be attributed to the strong absorption in the visible light region, large specific surface area, small crystallite size, large amount of surface hydroxyl groups, and mesoporosity.  相似文献   

19.
Microemulsion is the easiest and cleanest of the popular methods of synthesizing nanomaterial. This work synthesized the nanosized La-TiO2 and Ce-TiO2 particles through the hydrolyzation of tetrabutyl titanate in a Triton X-100/n-hexanol/cyclohexane/water reverse microemulsion. The particles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform-infrared spectroscopy (FT-IR) and thermogravimetry (TG). The photocatalytic activity was evaluated by photocatalytic degradation of methyl orange (MO) under ultraviolet light and visible light irradiation. The results showed that reverse microemulsion produced the nanosized and well-separated particles, which are obviously in degrading MO. Comparing the pure TiO2 with doping TiO2, the doping ones are smaller and have better photocatalytic activity, which was best at the molar content of 0.1% for La, whereas for Ce it was 0.5%.  相似文献   

20.
Europium and nitrogen co-doped TiO2 was successfully synthesized by the precipitation–peptization method. The structure and properties of the catalysts were characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and UV–vis diffuse reflectance spectra. The photocatalytic efficiency was evaluated by monitoring the photocatalytic degradation of salicylic acid under visible light irradiation. It was verified that TiO2 co-doped with nitrogen and 1% europium showed the highest photocatalytic activity. The adsorption isotherms were obtained by measuring the salicylic acid concentration before and after the dark adsorption at different original solution concentrations. The results illustrated that the doping of Eu was beneficial to the adsorption of salicylic acid. The probable degradation mechanism of salicylic acid was examined by the addition of NaF, Na2S2O3, and K2S2O8 as the probe molecules. It was verified that salicylic acid was first adsorbed on the surface of the catalysts, followed by the degradation by the photogenerated holes (h vb + ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号