首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The compounds [K(Q)][IrH(4)(PR(3))(2)] (Q = 18-crown-6, R = Ph, (i)Pr, Cy; Q = aza-18-crown-6, R = (i)Pr; Q = 1,10-diaza-18-crown-6, R = Ph, (i)Pr, Cy; Q = cryptand-222, R = (i)Pr, Cy) were formed in the reactions of IrH(5)(PR(3))(2) with KH and Q. In solution, the stereochemistry of the salts of [IrH(4)(PR(3))(2)](-) is surprisingly sensitive to the countercation: either trans as the potassium cryptand-222 salts (R = Cy, (i)Pr) or exclusively cis (R = Cy, Ph) as the crown- and azacrown-potassium salts or a mixture of cis and trans (R = (i)Pr). There is IR evidence for protonic-hydridic bonding between the NH of the aza salts and the iridium hydride in solution. In single crystals of [K(18-crown-6)][cis-IrH(4)(PR(3))(2)] (R = Ph, (i)Pr) and [K(aza-18-crown-6)][cis-IrH(4)(P(i)Pr(3))(2)], the potassium bonds to three hydrides on a face of the iridium octahedron according to X-ray diffraction studies. Significantly, [K(1,10-diaza-18-crown-6)][trans-IrH(4)(P(i)Pr(3))(2)] crystallizes in a chain structure held together by protonic-hydridic bonds. In [K(1,10-diaza-18-crown-6)][cis-IrH(4)(PPh(3))(2)], the potassium bonds to two hydrides so that one NH can form an intra-ion-pair protonic-hydridic hydrogen bond while the other forms an inter-ion-pair NH.HIr hydrogen bond to form chains through the lattice. Thus, there is a competition between the potassium and NH groups in forming bonds with the hydrides on iridium. The more basic P(i)R(3) complex has the lower N-H stretch in the IR spectrum because of stronger N[bond]H...HIr hydrogen bonding. The trans complexes have very low Ir-H wavenumbers (1670-1680) due to the trans hydride ligands. The [K(cryptand)](+) salt of [trans-IrH(4)(P(i)Pr(3))(2)](-) reacts with WH(6)(PMe(2)Ph)(3) (pK(alpha)(THF) 42) to give an equilibrium (K(eq) = 1.6) with IrH(5)(P(i)Pr(3))(2) and [WH(5)(PMe(2)Ph)(3)](-) while the same reaction of WH(6)(PMe(2)Ph)(3) with the [K(18-crown-6)](+) salt of [cis-IrH(4)(P(i)Pr(3))(2)](-) has a much larger equilibrium constant (K(eq) = 150) to give IrH(5)(P(i)Pr(3))(2) and [WH(5)(PMe(2)Ph)(3)](-); therefore, the tetrahydride anion displays an unprecedented increase (about 100-fold) in basicity with a change from [K(crypt)](+) to [K(crown)](+) countercation and a change from trans to cis stereochemistry. The acidity of the pentahydrides decrease in THF as IrH(5)(P(i)Pr(3))(2)/[K(crypt)][trans-IrH(4)(P(i)Pr(3))(2)] (pK(alpha)(THF) = 42) > IrH(5)(PCy(3))(2)/[K(crypt)][trans-IrH(4)(PCy(3))(2)] (pK(alpha)(THF) = 43) > IrH(5)(P(i)Pr(3))(2)/[K(crown)][cis-IrH(4)(P(i)Pr(3))(2)] (pK(alpha)(THF) = 44) > IrH(5)(PCy(3))(2)/[K(crown)][cis-IrH(4)(PCy(3))(2)]. The loss of PCy(3) from IrH(5)(PCy(3))(2) can result in mixed ligand complexes and H/D exchange with deuterated solvents. Reductive cleavage of P-Ph bonds is observed in some preparations of the PPh(3) complexes.  相似文献   

2.
A family of thirteen tetranuclear heterometallic zinc(II)-lanthanide(III) complexes of the hexa-imine macrocycle (L(Pr))(6-), with general formula Zn(II)(3)Ln(III)(L(Pr))(NO(3))(3)·xsolvents (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm or Yb), were prepared in a one-pot synthesis using a 3:1:3:3 reaction of zinc(II) acetate, the appropriate lanthanide(III) nitrate, the dialdehyde 1,4-diformyl-2,3-dihydroxybenzene (H(2)L(1)) and 1,3-diaminopropane. A hexanuclear homometallic zinc(II) macrocyclic complex [Zn(6)(L(Pr))(OAc)(5)(OH)(H(2)O)]·3H(2)O was obtained using a 2:0:1:1 ratio of the same reagents. A control experiment using a 1:0:1:1 ratio failed to generate the lanthanide-free [Zn(3)(L(Pr))] macrocyclic complex. The reaction of H(2)L(1) and zinc(II) acetate in a 1:1 ratio yielded the pentanuclear homometallic complex of the dialdehyde H(2)L(1), [Zn(5)(L(1))(5)(H(2)O)(6)]·3H(2)O. An X-ray crystal structure determination revealed [Zn(3)(II)Pr(III)(L(Pr))(NO(3))(2)(DMF)(3)](NO(3))·0.9DMF has the large ten-coordinate lanthanide(III) ion bound in the central O(6) site with two bidentate nitrate anions completing the O(10) coordination sphere. The three square pyramidal zinc(II) ions are in the outer N(2)O(2) sites with a fifth donor from DMF. Measurement of the magnetic properties of [Zn(II)(3)Dy(III)(L(Pr))(NO(3))(3)(MeOH)(3)]·4H(2)O with a weak external dc field showed that it has a frequency-dependent out-of-phase component of ac susceptibility, indicative of slow relaxation of the magnetization (SMM behaviour). Likewise, the Er and Yb analogues are field-induced SMMs; the latter is only the second example of a Yb-based SMM. The neodymium, ytterbium and erbium complexes are luminescent in the solid phase, but only the ytterbium and neodymium complexes show strong lanthanide-centred luminescence in DMF solution.  相似文献   

3.
The La(III), Ce(III), Pr(III), Nd(III), Sm(III), and Eu(III) complexes of the racemic heterochiral nonaaza macrocyclic amine L have been synthesized and characterized by spectroscopic methods. The X-ray crystal structures of the [PrL][Pr(NO(3))(6)].CH(3)OH and the isomorphic [NdL][Nd(NO(3))(6)].CH(3)OH complexes show that all nine nitrogen atoms of the macrocycle coordinate to the Ln(3+) ion, completing its coordination sphere. The macrocycle wraps tightly around the metal ion in double-helical fashion. The structures reveal the RRRRSS/SSSSRR configuration at the stereogenic carbon atoms of the three cyclohexane rings, confirming the heterochiral nature of the parent 3 + 3 macrocycle obtained in the condensation of racemic trans-1,2-diaminocyclohexane and 2,6-diformylpyridine. The NMR spectra of the isolated complexes indicate the presence of low C(1) symmetry [LnL](3+) complexes. The same symmetry is indicated by the X-ray crystal structures of Pr(III) and Nd(III) complexes, which show that for the RRRRSS enantiomer of the macrocycle L, the helix axis passes through the cyclohexane ring of RR chirality and the opposite pyridine ring. The NMR studies of complex formation in solution by the paramagnetic Pr(3+) and Eu(3+) ions indicate that the initially formed [LnL](3+) complexes are of C(2) symmetry. For the RRRRSS enantiomer of the macrocycle L in the C(2)-symmetric species, the helix axis passes through the cyclohexane ring of SS chirality and the opposite pyridine ring. The C(1)-symmetric and C(2)-symmetric forms of the [LnL](3+) complexes constitute a new kind of isomers and the conversion of the kinetic complexation product of C(2) symmetry into the thermodynamic product of C(1) symmetry corresponds to an unprecedented switching of the orientation of the helix axis within the macrocycle framework.  相似文献   

4.
本工作合成了十五个新的镧系、钇的硝酸盐和戊二酰双(苯并-15-冠-5)的配合物,并进行了元素分析、紫外光谱、红外光谱、激光拉曼光谱、差热和热重等性质研究, 对这一系列稀土配合物的性质作了比较。  相似文献   

5.
The extraction behaviour of Pr(III) from aqueous nitric acid medium employing benzoylacetone has been studied in presence of two crown ethers, viz., 15-crown-5 and benzo-15-crown-5 in chloroform medium using UV-vis absorption spectroscopy. The binary equilibrium constant (logk(ex)) for the complex [Pr(benzoylacetonate)(NO3(-))2(H(2)O)] in organic phase was found to be 1.170. The overall equilibrium constants (logK) for the ternary species [Pr(benzoylacetonate)(crown ether)(NO3(-))(2)] were estimated to be 4.01 and 4.41 for 15-crown-5 and benzo-15-crown-5, respectively. The trend in the equilibrium constant values were very much in accordance with the nature of substitution of the donor moiety. The extraction of Pr(III) by the benzoylacetone-crown ether combination was maximum at pH 3.0 and extraction decreases with increase in pH. It has been found that the extent of extraction of Pr(III) in organic phase as the binary as well as ternary complex [Pr(benzoylacetonate)(NO3(-))(2)(H(2)O)] and [Pr(benzoylacetonate)(crown ether)(NO3(-))(2)] increases with increase in concentration of the ligand. Similar trend is observed in the extraction by only donors. Enthalpies and entropies of formation for the ternary extraction process have been estimated. In addition, the effect of NaNO(3) as foreign salt was also studied and it was observed that with increase in ionic strength, percentage extraction increases.  相似文献   

6.
The enantiopure amine macrocycle H(3)L, as well as the parent macrocyclic Schiff base H(3)L1, the 3 + 3 condensation product of (1R,2R)-1,2-diaminocyclohexane and 2,6-diformyl-4-methylphenol, are able to form mononuclear complexes with lanthanide(III) ions. The lanthanide(III) complexes of H(3)L have been studied in solution using NMR spectroscopy and electrospray mass spectrometry. The NMR spectra indicate the presence of complexes of low C(1) and C(2) symmetry. The (1)H and (13)C NMR signals of the Lu(III) complex obtained from H(3)L have been assigned on the basis of COSY, TOCSY, NOESY, ROESY and HMQC spectra. The NMR data reveal unsymmetrical binding of lanthanide(III) ion and the presence of a dynamic process corresponding to rotation of Lu(III) within the macrocycle. The [Ln(H(4)L)(NO(3))(2)](NO(3))(2)(Ln = Sm(III), Eu(III), Dy(III), Yb(III) and Lu(III)) complexes of the cationic ligand H(4)L(+) have been isolated in pure form. The X-ray analysis of the [Eu(H(4)L)(NO(3))(2)](NO(3))(2) complex confirms the coordination mode of the macrocycle determined on the basis of NMR results. In this complex the europium(III) ion is bound to three phenolate oxygen atoms and two amine nitrogen atoms of the monoprotonated macrocycle H(4)L(+), as well as to two axial bidendate nitrate anions. In the presence of a base, mononuclear La(III), Ce(III) and Pr(III) complexes of the deprotonated form of the ligand L(3-) can be obtained. When 2 equivalents of Pr(III) are used in this synthesis Na(3)[Pr(2)L(NO(3))(2)(OH)(2)](2)NO(3).5H(2)O is obtained. The NMR, ES MS and an X-ray crystal model of this complex show coordination of two Pr(III) ions by the macrocycle L. The X-ray crystal structure of the free macrocycle H(3)L1 has also been determined. In contrast to macrocyclic amine H(3)L, the Schiff base H(3)L1 adopts a cone-type conformation resembling calixarenes.  相似文献   

7.
Hydrated neodymium nitrates can be readily transformed to anhydrous ether solvates which react with cyclopentadienyl reagents to make organometallic nitrate complexes with variable degrees of oligomerization. Heating Nd(NO(3))(3)(H(2)O)(6) in tetrahydrofuran at reflux, removal of solvent, drying at 100 degrees C under high vacuum, and addition of hot THF generates Nd(NO(3))(3)(THF)(3), 1. Using dimethoxyethane, Nd(NO(3))(3)(DME)(2), 2, can be obtained similarly. Addition of NaC(5)Me(5) to 1 generates (C(5)Me(5))Nd(NO(3))(3)(THF)Na(THF)(x)complexes which crystallize as ([(C(5)Me(5))(NO(3))(2)Nd(THF)(micro-NO(3))](2)Na(THF)(4))[Na(THF)(6)], 3, or [(C(5)Me(5))Nd(THF)(mu-NO(3))(3)Na(THF)(2)](n), 4, depending on the conditions. The trimetallic Nd(2)Na unit in 3 forms an extended system in 4 via bridging nitrates. Addition of KC(5)Me(5) and 18-crown-6 to 1 generates another extended complex [(C(5)Me(5))Nd(THF)(NO(3))(mu-NO(3))(2)K(18-crown-6)](n), 5, in which an 18-crown-6 ligated potassium links neodymium centers via two bridging nitrates and an agostic interaction between a C(5)Me(5) methyl group and potassium.  相似文献   

8.
The platelike crystals of a series of novel molecular conductors, which are based on the pi-donor molecules BDT-TTP (2,5-bis(1,3-dithiol-2-ylidene)-1,3,4,6-tetrathiapentalene) with a tetrathiapentalene skeleton and lanthanide nitrate complex anions [Ln(NO3)x](3-x)(Ln = La, Ce, (Pr), Tb, Dy, Ho, Er, Tm, Yb, Lu) with localized 4f magnetic moments, were synthesized. Except for the Ce complex, the salts were composed of (BDT-TTP)(5)[Ln(NO(3))(5)] and were isostructural. Even though the Ce crystal had a different composition, (BDT-TTP)(6)[Ce(NO(3))(6)](C(2)H(5)OH)(x)() (x approximately 3), the crystals all had the space group P(-)1. Although the X-ray examination of the Pr salts was insufficient, the existence of two modifications was suggested in these systems by preliminary X-ray examination. Previously, we reported the crystal structures and unique magnetic properties of (BDT-TTP)(5)[Ln(NO(3))(5)] (Ln = Sm, Eu, Nd, Gd). Thus, by combining the results of this work with previous one, we for the first time succeeded in obtaining a complete set of organic conductors composed of the identical pi-donors (BDT-TTP in this case) and all the lanthanide nitrate complex anions (except the complex with Pm(3+)). The crystals were all metallic down to 2 K. Electronic band structure calculations resulted in two-dimensional Fermi surfaces, which was consistent with their stable metallic states. Except for the Lu complex, which lacked paramagnetic moments, the magnetic susceptibilities were measured on the six heavy lanthanide ion complex salts by a SQUID magnetometer (Ln = Tb, Dy, Ho, Er, Tm, Yb). The large paramagnetic susceptibilities, which were caused by the paramagnetic moments of the rare-earth ions, were obtained. The Curie-Weiss law fairly accurately reproduced the temperature dependence of the magnetic susceptibilities of (BDT-TTP)(5)[Ho(NO(3))(5)] in the experimental temperature range (2-300 K) and a comparatively large Weiss temperature (|THETAV;|) was obtained (THETAV;(Ho) = -15 K). A Weiss temperature (THETAV;(Tm) = -8 K) was also obtained for Tm. The |THETAV;| values of other (BDT-TTP)(5)[Ln(NO(3))(5)] salts and (BDT-TTP)(6)[Ce(NO(3))(6)](C(2)H(5)OH)x(x approximately 3) were as follows: |THETAV;|/K = 4 (Er), < or =2 (Ce, Tb, Dy, Yb). The comparatively strong intermolecular magnetic interaction between Ho(3+) ions, which was suggested by the |THETAV;| value, is inconsistent with the traditional image of strongly localized 4f orbitals shielded by the electrons in the outer 5s and 5p orbitals. The dipole interactions between Ln(3+) ions causing the Curie-Weiss behavior and the comparatively large THETAV; value of (BDT-TTP)(5)[Ho(NO(3))(5)] is inconsistent with the data, since the complexes exhibit isostructural properties and there is not a clear relationship between the magnitudes of THETAV; values and those of magnetic moments. Therefore, it is possible that the 4f orbitals of Ho atom are sensitive to the ligand field, which will have an effect on the orbital moment of the Ho(3+) ion and/or produce a small amount of mixing between 4f and ligand orbitals to give rise to "real" intermolecular antiferromagnetic interaction through intermolecular overlapping between pi (BDT-TTP) and ligand orbitals of lanthanide nitrate complex anions.  相似文献   

9.
The molecular structure, dynamics and paramagnetic properties of the complex cations [Ln(ptfa)2 (18-crown-6)]+ in deuterated toluene were studied for Ln = La, Ce, Pr and Nd. The activation enthalpy values of 68 ± 5, 55 ± 15 and 60 ± 13 kJ mol-1 for the 18-crown-6 conformationalinversion processes for the complexcations of Ce, Pr and Nd, respectively,were obtained. Quantitativeinvestigation of the lanthanide-induced chemical shifts shows a monotonic change of a spatial structure and magnetic susceptibility in comparison with the Bleaney predicted dependence. The free energy of molecular inversion activation for 18-crown-6 molecules in the complex cation [Ln(fod)2(18-crown-6)]+ is 74 ± 9 kJ mol-1 at 363 K, which is a little more than the value of the free energy of activation 64 ± 9 kJ mol-1 at 363 K in the complex cation [Ln(ptfa)2(18-crown-6)]+.  相似文献   

10.
This report covers studies in trivalent lanthanide complexation by two simple cyclohexanetriols that are models of the two coordination sites found in sugars and derivatives. Several complexes of trivalent lanthanide ions with cis,cis-1,3,5-trihydroxycyclohexane (L(1)()) and cis,cis-1,2,3-trihydroxycyclohexane (L(2)()) have been characterized in the solid state, and some of them have been studied in organic solutions. With L(1)(), Ln(L)(2) complexes are obtained when crystallization is performed from acetonitrile solutions whatever the nature of the salt (nitrate or triflate) [Ln(L(1)())(2)(NO(3))(2)](NO(3)) (Ln = Pr, Nd); [Ln(L(1)())(2)(NO(3))H(2)O](NO(3))(2) (Ln = Eu, Ho, Yb); [Ln(L(1)())(2)(OTf)(2)(H(2)O)](OTf) (Ln = Nd, Eu). Lanthanum nitrate itself gives a mixed complex [La(L(1)())(2)(NO(3))(2)][LaL(1)()(NO(3))(4)] from acetonitrile solution while [La(L(1)())(2)(NO(3))(2)](NO(3)) is obtained using dimethoxyethane as reaction solvent and crystallization medium. With L(2)(), Ln(L)(2) complexes have also been crystallized from methanol solution [Ln(L(2)())(2)(NO(3))(2)]NO(3), (Ln = Pr, Nd, Eu). Single-crystal X-ray diffraction analyses are reported for these complexes. Complex formation in solution has been studied for several triflate salts (La, Pr, Nd, Eu, and Yb) with L(1 )()and L(2)(), respectively in acetonitrile and in methanol. In contrast to the solid state, both structures Ln(L) and Ln(L)(2) equilibrate in solution, as was demonstrated by low-temperature (1)H NMR and electrospray ionization mass spectrometry experiments. Competing experiments in complexing abilities of L(1)() and L(2)() with trivalent lanthanide cations have shown that only L(2)() exhibits a small selectivity (Nd > Pr > Yb > La > Eu) in methanol.  相似文献   

11.
For temperature determination in solutions it is suggested that the temperature dependence of the paramagnetic lanthanide-induced shifts (LIS) in the NMR spectra on the ligand nuclei be used for [Ln(PTA)2(18-crown-6)]+[Ln(PTA)4]? complex ion pairs formed in CCl4, CDCl3, CD2Cl2, CD3C6D5, and C2D3N type low-polar solvents (Ln = La, Ce, Pr, Nd, Eu; PTA is the pivalyltrifluoroacetonato anion). It was found experimentally that the [Ln(PTA)2(18-crown-6)]+ complex cation molecules (Ln = Ce and Pr) proved most suitable for use as nanosized (≈1.1 nm) probes for temperature determinations in nonaqueous solutions. A linear dependence of the LIS on the 1H nuclei of different groups and the difference between the LIS corresponding to the CH2 groups of the 18-crown-6 molecules and the CH groups of the PTA anions on the reciprocal temperature (1/T) was found. The LIS of the individual signals of different groups in Ln paramagnetic complexes (relative to the signals of the diamagnetic analogs, e.g., La or Lu) may be used for temperature control in the sample, although the temperature measurement error is smaller (≤ 0.04 K) when the difference between the LIS of the CH2 and CH groups is used. Due to the high thermodynamic and kinetic stability combined with small sizes of [Ln(PTA)2(18-crown-6)]+[Ln(PTA)4]? molecules in nonaqueous solutions, these compounds may be used as thermometric NMR sensors directly in reaction media for in situ control over temperature.  相似文献   

12.
A series of low-melting-point salts with hexakisdicyanonitrosomethanidolanthanoidate anions has been synthesised and characterised: (C(2) mim)(3) [Ln(dcnm)(6)] (1?Ln; 1?Ln=1?La, 1?Ce, 1?Pr, 1?Nd), (C(2) C(1) mim)(3) [Pr(dcnm)(6)] (2?Pr), (C(4) C(1) pyr)(3) [Ce(dcnm)(6)] (3?Ce), (N(1114))(3) [Ln(dcnm)(6)] (4?Ln; 4?Ln=4?La, 4?Ce, 4?Pr, 4?Nd, 4?Sm, 4?Gd), and (N(1112OH) )(3) [Ce(dcnm)(6)] (5?Ce) (C(2) mim=1-ethyl-3-methylimidazolium, C(2) C(1) mim=1-ethyl-2,3-dimethylimidazolium, C(4) C(1) py=N-butyl-4-methylpyridinium, N(1114) =butyltrimethylammonium, N(1112OH) =2-(hydroxyethyl)trimethylammonium=choline). X-ray crystallography was used to determine the structures of complexes 1?La, 2?Pr, and 5?Ce, all of which contain [Ln(dcnm)(6)](3-) ions. Complexes 1?Ln and 2?Pr were all ionic liquids (ILs), with complex 3?Ce melting at 38.1?°C, the lowest melting point of any known complex containing the [Ln(dcnm)(6)](3-) trianion. The ammonium-based cations proved to be less suitable for forming ILs, with complexes 4?Sm and 4?Gd being the only salts with the N(1114) cation to have melting points below 100?°C. The choline-containing complex 5?Ce did not melt up to 160?°C, with the increase in melting point possibly being due to extensive hydrogen bonding, which could be inferred from the crystal structure of the complex.  相似文献   

13.
Journal of Structural Chemistry - Complexes [(Pr(DPM)3)2], [Pr(DPM)3(18-crown-6)], [(Pr(DPM)3)2(18-crown-6)], [Pr(DPM)(PTA)(18-crown-6)]+ and the temperature sensitivity of paramagnetic...  相似文献   

14.
镧系含杂环胺三元配合物的研究从六十年代至今已进行了大量探索 ,但四元配合物的研究一直不多 ,并且由于联吡啶 (Bipy)的配位能力相对较弱 ,有关其四元配合物的研究报道更为少见[1~ 3] 。我们探索合成了 [Ln(C6 H5COO) 2 (NO3)(Bipy) ]2 ,且在合成过程中首次观察到了热力学与动力学竞争的现象。1 实验部分1 1 试剂和仪器稀土氧化物纯度超过 99.99% (上海跃龙有色金属有限公司 ) ,其余试剂均为分析纯。CarloErba 1 1 0 6型元素分析仪 ;DDS 1 1A型电导率仪 (1 .0× 1 0 -3mol·L-1DMF) ;日本岛津 47…  相似文献   

15.
The compounds [K(18-crown-6)](3)[Ir(Se(4))(3)] (1), [K(2.2.2-cryptand)](3)[Ir(Se(4))(3)].C(6)H(5)CH(3) (2), and [K(18-crown-6)(DMF)(2)][Ir(NCCH(3))(2)(Se(4))(2)] (3) (DMF = dimethylformamide) have been prepared from the reaction of [Ir(NCCH(3))(2)(COE)(2)][BF(4)] (COE = cyclooctene) with polyselenide anions in acetonitrile/DMF. Analogous reactions utilizing [Rh(NCCH(3))(2)(COE)(2)][BF(4)] as a Rh source produce homologues of the Ir complexes; these have been characterized by (77)Se NMR spectroscopy. [NH(4)](3)[Ir(S(6))(3)].H(2)O.0.5CH(3)CH(2)OH (4) has been synthesized from the reaction of IrCl(3).nH(2)O with aqueous (NH(4))(2)S(m)(). In the structure of [K(18-crown-6)](3)[Ir(Se(4))(3)] (1) the Ir(III) center is chelated by three Se(4)(2)(-) ligands to form a distorted octahedral anion. The structure contains a disordered racemate of the Deltalambdalambdalambda and Lambdadeltadeltadelta conformers. The K(+) cations are pulled out of the planes of the crowns and interact with Se atoms of the [Ir(Se(4))(3)](3)(-) anion. [K(2.2.2-cryptand)](3)[Ir(Se(4))(3)].C(6)H(5)CH(3) (2) possesses no short K.Se interactions; here the [Ir(Se(4))(3)](3)(-) anion crystallizes as the Deltalambdalambdadelta/Lambdadeltadeltalambda racemate. In the crystal structure of [K(18-crown-6)(DMF)(2)][Ir(NCCH(3))(2)(Se(4))(2)] (3), the K(+) cation is coordinated by an 18-crown-6 ligand and two DMF molecules and the anion comprises an octahedral Ir(III) center bound by two chelating Se(4)(2)(-) chains and two trans acetonitrile groups. The [Ir(Se(4))(3)](3)(-) and [Rh(Se(4))(3)](3)(-) anions undergo conformational transformations as a function of temperature, as observed by (77)Se NMR spectroscopy. The thermodynamics of these transformations are: [Ir(Se(4))(3)](3)(-), DeltaH = 2.5(5) kcal mol(-)(1), DeltaS = 11.5(2.2) eu; [Rh(Se(4))(3)](3)(-), DeltaH = 5.2(7) kcal mol(-)(1), DeltaS = 24.7(3.0) eu.  相似文献   

16.
1H and 13C NMR measurements are reported for the CDCl3 and CD2Cl2 solutions of [La(NO3)3(18-crown-6)] (I), [Pr(NO3)3(18-crown-6)] (II) and [Ce(NO3)3(18-crown-6)] (III) complexes. Temperature dependencies of the 1H NMR spectra of II have been analyzed using the dynamic NMR methods for multi-site exchange. Two types of conformational dynamic processes in II were identified (the first one with activation enthalpy ΔH =26 ± 4 kJ/mol is conditioned by interconversion of complex enantiomeric form and pseudorotation of macrocycle molecule upon the C 2 symmetry axis, the second one with ΔH =46 ± 5 kJ/mol is conditioned by macrocycle molecule inversion). Studies of the values of the lanthanide-induced shifts revealed that the structure of complexes in solution is similar to that reported for the complex I in the crystal state.This revised version was published online in July 2005 with a corrected issue number.  相似文献   

17.
1H and 13C NMR measurements are reported for the CDCl3 and CD2Cl2 solutions of [La(NO3)3(18-crown-6)] (I), [Pr(NO3)3(18-crown-6)] (II) and [Ce(NO3)3(18-crown-6)] (III) complexes. Temperature dependencies of the 1H NMR spectra of II have been analyzed using the dynamic NMR methods for multi-site exchange. Two types of conformational dynamic processes in II were identified (the first one with activation enthalpy ΔH =26 ± 4 kJ/mol is conditioned by interconversion of complex enantiomeric form and pseudorotation of macrocycle molecule upon the C 2 symmetry axis, the second one with ΔH =46 ± 5 kJ/mol is conditioned by macrocycle molecule inversion). Studies of the values of the lanthanide-induced shifts revealed that the structure of complexes in solution is similar to that reported for the complex I in the crystal state.  相似文献   

18.
The synthesis and magnetic properties of 13 new homo- and heterometallic Co(II) complexes containing the artificial amino acid 2-amino-isobutyric acid, aibH, are reported: [Co(II)(4)(aib)(3)(aibH)(3)(NO(3))](NO(3))(4)·2.8CH(3)OH·0.2H(2)O (1·2.8CH(3)OH·0.2H(2)O), {Na(2)[Co(II)(2)(aib)(2)(N(3))(4)(CH(3)OH)(4)]}(n) (2), [Co(II)(6)La(III)(aib)(6)(OH)(3)(NO(3))(2)(H(2)O)(4)(CH(3)CN)(2)]·0.5[La(NO(3))(6)]·0.75(ClO(4))·1.75(NO(3))·3.2CH(3)CN·5.9H(2)O (3·3.2CH(3)CN·5.9H(2)O), [Co(II)(6)Pr(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)CN)(6)]·[Pr(NO(3))(5)]·0.41[Pr(NO(3))(3)(ClO(4))(0.5)(H(2)O)(1.5)]·0.59[Co(NO(3))(3)(H(2)O)]·0.2(ClO(4))·0.25H(2)O (4·0.25H(2)O), [Co(II)(6)Nd(III)(aib)(6)(OH)(3)(NO(3))(2.8)(CH(3)OH)(4.7)(H(2)O)(1.5)]·2.7(ClO(4))·0.5(NO(3))·2.26CH(3)OH·0.24H(2)O (5·2.26CH(3)OH·0.24H(2)O), [Co(II)(6)Sm(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)CN)(6)]·[Sm(NO(3))(5)]·0.44[Sm(NO(3))(3)(ClO(4))(0.5)(H(2)O)(1.5)]·0.56[Co(NO(3))(3)(H(2)O)]·0.22(ClO(4))·0.3H(2)O (6·0.3H(2)O), [Co(II)(6)Eu(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)OH)(4.87)(H(2)O)(1.13)](ClO(4))(2.5)(NO(3))(0.5)·2.43CH(3)OH·0.92H(2)O (7·2.43CH(3)OH·0.92H(2)O), [Co(II)(6)Gd(III)(aib)(6)(OH)(3)(NO(3))(2.9)(CH(3)OH)(4.9)(H(2)O)(1.2)]·2.6(ClO(4))·0.5(NO(3))·2.58CH(3)OH·0.47H(2)O (8·2.58CH(3)OH·0.47H(2)O), [Co(II)(6)Tb(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)CN)(6)]·[Tb(NO(3))(5)]·0.034[Tb(NO(3))(3)(ClO(4))(0.5)(H(2)O)(0.5)]·0.656[Co(NO(3))(3)(H(2)O)]·0.343(ClO(4))·0.3H(2)O (9·0.3H(2)O), [Co(II)(6)Dy(III)(aib)(6)(OH)(3)(NO(3))(2.9)(CH(3)OH)(4.92)(H(2)O)(1.18)](ClO(4))(2.6)(NO(3))(0.5)·2.5CH(3)OH·0.5H(2)O (10·2.5CH(3)OH·0.5H(2)O), [Co(II)(6)Ho(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)CN)(6)]·0.27[Ho(NO(3))(3)(ClO(4))(0.35)(H(2)O)(0.15)]·0.656[Co(NO(3))(3)(H(2)O)]·0.171(ClO(4)) (11), [Co(II)(6)Er(III)(aib)(6)(OH)(4)(NO(3))(2)(CH(3)CN)(2.5)(H(2)O)(3.5)](ClO(4))(3)·CH(3)CN·0.75H(2)O (12·CH(3)CN·0.75H(2)O), and [Co(II)(6)Tm(III)(aib)(6)(OH)(3)(NO(3))(3)(H(2)O)(6)]·1.48(ClO(4))·1.52(NO(3))·3H(2)O (13·3H(2)O). Complex 1 describes a distorted tetrahedral metallic cluster, while complex 2 can be considered to be a 2-D coordination polymer. Complexes 3-13 can all be regarded as metallo-cryptand encapsulated lanthanides in which the central lanthanide ion is captivated within a [Co(II)(6)] trigonal prism. dc and ac magnetic susceptibility studies have been carried out in the 2-300 K range for complexes 1, 3, 5, 7, 8, 10, 12, and 13, revealing the possibility of single molecule magnetism behavior for complex 10.  相似文献   

19.
Reaction of 2-(arylazo)phenols (H(2)ap-R; R = OCH(3), CH(3), H, Cl, and NO(2)) with [Os(PPh(3))(2)(CO)(2)(HCOO)(2)] affords a family of organometallic complexes of osmium(II) of type [Os(PPh(3))(2)(CO)(ap-R)] where the 2-(arylazo)phenolate ligand is coordinated to the metal center as a tridentate C,N,O-donor. Structure of the [Os(PPh(3))(2)(CO)(ap-H)] complex has been determined by X-ray crystallography. All the [Os(PPh(3))(2)(CO)(ap-R)] complexes are diamagnetic and show characteristic (1)H NMR signals and intense MLCT transitions in the visible region. They also show emission in the visible region at ambient temperature. Cyclic voltammetry on the [Os(PPh(3))(2)(CO)(ap-R)] complexes shows a reversible Os(II)-Os(III) oxidation within 0.39-0.73 V vs SCE, followed by a reversible Os(III)-Os(IV) oxidation within 1.06-1.61 V vs SCE. Coulometric oxidation of the [Os(PPh(3))(2)(CO)(ap-R)] complexes generates the [Os(III)(PPh(3))(2)(CO)(ap-R)](+) complexes, which have been isolated as the hexafluorophosphate salts. The [Os(III)(PPh(3))(2)(CO)(ap-R)]PF(6) complexes are one-electron paramagnetic and show axial ESR spectra. In solution they behave as 1:1 electrolytes and show intense LMCT transitions in the visible region. The [Os(III)(PPh(3))(2)(CO)(ap-R)]PF(6) complexes have been observed to serve as mild one-electron oxidants in a nonaqueous medium.  相似文献   

20.
The first example of a mononuclear diphosphanidoargentate, bis[bis(trifluoromethyl)phosphanido]argentate, [Ag[P(CF(3))(2)](2)](-), is obtained via the reaction of HP(CF(3))(2) with [Ag(CN)(2)](-) and isolated as its [K(18-crown-6)] salt. When the cyclic phosphane (PCF(3))(4) is reacted with a slight excess of [K(18-crown-6)][Ag[P(CF(3))(2)](2)], selective insertion of one PCF(3) unit into each silver phosphorus bond is observed, which on the basis of NMR spectroscopic evidence suggests the [Ag[P(CF(3))P(CF(3))(2)](2)](-) ion. On treatment of the phosphane complexes [M(CO)(5)PH(CF(3))(2)] (M = Cr, W) with [K(18-crown-6)][Ag(CN)(2)], the analogous trinuclear argentates, [Ag[(micro-P(CF(3))(2))M(CO)(5)](2)](-), are formed. The chromium compound [K(18-crown-6)][Ag[(micro-P(CF(3))(2))Cr(CO)(5)](2)] crystallizes in a noncentrosymmetric space group Fdd2 (No. 43), a = 2970.2(6) pm, b = 1584.5(3) pm, c = 1787.0(4), V = 8.410(3) nm(3), Z = 8. The C(2) symmetric anion, [Ag[(micro-P(CF(3))(2))Cr(CO)(5)](2)](-), shows a nearly linear arrangement of the P-Ag-P unit. Although the bis(pentafluorophenyl)phosphanido compound [Ag[P(C(6)F(5))(2)](2)](-) has not been obtained so far, the synthesis of its trinuclear counterpart, [K(18-crown-6)][Ag[(micro-P(C(6)F(5))(2))W(CO)(5)](2)], was successful.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号