首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 738 毫秒
1.
A series of isostructural open-framework coordination polymers formulated as [Ln(dmf)(3)(ptmtc)] (Ln = Sm (1), Eu (2), Gd (3), Tb (4), Dy (5); PTMTC = polychlorotriphenylmethyl tricarboxylate) and [Ln(dmf)(2)H(2)O(αH-ptmtc)] (Ln = Sm (1'), Eu (2'), Gd (3'), Tb (4'), Dy (5')) have been obtained by treating Ln(III) ions with PTMTC ligands with a radical (PTMTC(3-)) or a closed-shell character (αH-PTMTC(3-)). X-ray diffraction analyses reveal that these coordination polymers possess 3D architectures that combine large channels and fairly rare lattice complex T connectivity. In addition, these compounds show selective framework dynamic sorption properties. For both classes of ligands, the ability to act as an antenna in Ln sensitization processes has been investigated. No luminescence was observed for compounds 1-5, and 3' because of the PTMTC(3-) ligand and/or Gd(III) ion characteristics. Conversely, photoluminescence measurements show that 1', 2', 4', and 5' emit dark orange, red, green, and dark cyan metal-centered luminescence. The magnetic properties of all of these compounds have been investigated. The nature of the {Ln-radical} exchange interaction in these compounds has been assessed by comparing the behavior of the radical-based coordination polymers 1-5 with those of the compounds with the diamagnetic ligand set. While antiferromagnetic {Sm-radical} interactions are found in 1, ferromagnetic {Ln-radical} interactions propagate in the 3D architectures of 3, 4, and 5 (Ln = Gd, Tb, and Dy, respectively). This procedure also provided access to information on the {Ln-Ln} exchange existing in these magnetic systems.  相似文献   

2.
Lanthanide coordination polymers {[Ln(PTMTC)(EtOH)2H2O] ? x H2O, y EtOH} [Ln=Tb ( 1 ), Gd ( 2 ), and Eu ( 3 )] and {[Ln(αH? PTMTC)(EtOH)2H2O] ? x H2O, y EtOH} [Ln=Tb ( 1′ ), Gd ( 2′ ), and Eu ( 3′ )] have been prepared by reacting LnIII ions with tricarboxylate‐perchlorotriphenylmethyl/methane ligands that have a radical (PTMTC3?) or closed‐shell (αH? PTMTC3?) character, respectively. X‐ray diffraction analyses reveal 3D architectures that combine helical 1D channels and a fairly rare (6,3) connectivity described with the (42.8)?(44.62.85.104) Schäfli symbol. Such 3D architectures make these polymers porous solids upon departure of the non‐coordinated guest‐solvent molecules as confirmed by the XRD structure of the guest‐free [Tb(PTMTC)(EtOH)2H2O] and [Tb(αH? PTMTC)(EtOH)2H2O] materials. Accessible voids represent 40 % of the cell volume. Metal‐centered luminescence was observed in TbIII and EuIII coordination polymers 1′ and 3′ , although the LnIII‐ion luminescence was quenched when radical ligands were involved. The magnetic properties of all these compounds were investigated, and the nature of the {Ln–radical} (in 1 and 2 ) and the {radical–radical} exchange interactions (in 3 ) were assessed by comparing the behaviors for the radical‐based coordination polymers 1 – 3 with those of the compounds with the diamagnetic ligand set. Whilst antiferromagnetic {radical–radical} interactions were found in 3 , ferromagnetic {Ln–radical} interactions propagated in the 3D architectures of 1 and 2 .  相似文献   

3.
This study concerned the use of lanthanide chelates to detect glycyl-leucyl-phenylalanine (GLF) and its homologues. Spectroscopic analysis of peptides without or with terbium complexation revealed the formation of (LF)(3)(Tb)(2), (GF)(3)(Tb)(2), (GLF)(3)(Tb)(2) and (FL)(4)Tb, (FG)(4)Tb complexes with high stability constants in methanolic solutions (pK(d)>13). Lanthanide chelate emission displayed a large Stokes shift (>270 nm), which allowed Tb chelates of GLF and its derivatives to be used for detection purposes. However, this preliminary study indicated some important limitations associated with lanthanide chelation, such as high methanolic content.  相似文献   

4.
The binary complex of Tb(III) with N-phenylanthranilic acid (N-HPA) was synthesized, and the ternary complexes were synthesized by introducing 1,10-phenanthroline (Phen), 2,2'-dipyridyl (Bipy), trioctylphosphine oxide (TPPO) as the second ligand, respectively. These complexes were characterized by infrared spectra, UV spectra and fluorescence spectra. The effect and mechanism of different second ligands on the fluorescent intensity of the terbium N-phenylanthranilic acid complexes was discussed. It showed that all the complexes exhibited ligand-sensitized green emission. The luminescence intensity increased in the sequence of Tb(N-PA)(3)Phen相似文献   

5.
Solvent inclusion/evacuation caused variations in the structural and magnetic characteristics of the purely organic porous magnet based on the tricarboxylic-substituted PTMTC radical. Whereas no inclusion is observed for nonpolar solvents, the exposure of crystals of the alpha-phase of PTMTC to vapors of polar organic solvents with hydrogen acceptor and/or donor functionalities, such as, ethanol, benzoic alcohol, n-decanol, THF, and DMSO results in the inclusion of these solvents in the highly polar tubular channels of the alpha-phase. The resulting inclusion compounds of formula PTMTC.x(guest) show several structural rearrangements, as confirmed by IR and XRPD (X-ray powder diffraction) measurements. The crystal transformations have been studied for a specific case: the PTMTC.EtOH adduct. The crystal structure reveals that included guest solvent molecules participate in the formation of new hydrogen bonds with the carboxylic groups of PTMTC radicals, inducing the disruption of several direct hydrogen bonds among these radicals. As expected, the interruption of direct hydrogen bonds between PTMTC radicals induces large transformations in the magnetic properties. From the ferromagnetic behavior of the alpha-phase, predominant antiferromagnetic interactions are observed for the inclusion adducts. Interestingly, both structural and magnetic changes are reversible after removal of guest solvent molecules.  相似文献   

6.
Five different co-ordination polymers of terbium(III) and the bidentate ligand 4,4'-bipyridine-N,N'-dioxide (L), [Tb(L)(CH(3)OH)(NO(3))(3)](infinity) (1), ([Tb(L)(1.5)(NO(3))(3)].CH(2)Cl(2))(infinity) (2), ([Tb(L)(1.5)(NO(3))(3)].CH(3)OH.0.8H(2)O)(infinity) (3), ([Tb(L)(1.5)(NO(3))(3)].0.4C(2)Cl(4).0.8CH(3)OH)(infinity) (4), and [Tb(L)(2)(NO(3))(3)](infinity) (5) have been synthesised by the use of different "diffusion solvent mixtures", and structurally characterised by X-ray crystallography. Compound 1, with a Tb:L stoichiometry of 1:1, adopts a zig-zag chain structure, which forms three-fold interpenetrating diamondoid frameworks through interchain hydrogen bonding between co-ordinated methanol and a nitrate group on an adjacent chain. Polymers 2, 3, and 4 all have a Tb:L stoichiometry of 1:1.5, but adopt different topologies. For 2, a ladder arrangement is found and large channels which accommodate solvent CH(2)Cl(2) molecules are formed by superposition of the ladders. For 3 and 4 4.8(2) net structures are observed. The superposition of the 4.8(2) nets in 3 and 4, by disposing adjacent layers such that every octagon is positioned below a tetragon from the neighbouring layer, allows the formation of two kinds of channel, with that inside the tetragons accommodating methanol molecules. The other kind of channel, between tetragons, accommodates water molecules in the case of 3 and tetrachloroethylene molecules in the case of 4. Compound 5, with a Tb:L stoichiometry of 1:2, has a linear polymeric structure with one bridging and one terminal ligand, and forms (6,3) plane nets by means of intermolecular electrostatic interactions between N-oxide moieties. X-ray powder diffraction studies show that upon desolvation, compound 2 maintains its original ladder framework.  相似文献   

7.
Four types of cobalt-lanthanide heterometallic compounds based on metalloligand Co(2,5-pydc)(3) (3-) (2,5-H(2)pydc=pyridine-2,5-dicarboxylate acid), [Ln(2)Co(2)(2,5-pydc)(6)(H(2)O)(4)](n) 2n H(2)O (1) (Ln=Tb, Dy for 1 a, 1 b respectively), [Tb(2)Co(2)(2,5-pydc)(6)(H(2)O)(4)](n)3n H(2)O (2), [Tb(2)Co(2)(2,5-pydc)(6)(H(2)O)(9)](n)4n H(2)O (3), and [LaCo(2,5-pydc)(3)(H(2)O)(2)](n)2n H(2)O (4) have been synthesized. Compound 1 has a layer structure with well-isolated carboxylate-bridged Ln(3+) chains, compound 2 is a three-dimensional (3D) porous network with Tb(3+) chains that are also well isolated and carboxylate bridged, 3 is a layer structure based on dinuclear units, and 4 is a 3D network with boron nitride (BN) topology. DC magnetic studies reveal ferromagnetic coupling in all the carboxylate-bridged Ln(3+) chains in 1 a, 1 b, and 2. Compared to the silence of the out-of-phase ac susceptibility of 2, above 1.9 K the magnetic relaxation behavior of both 1 a and 1 b is slow like that of a single-chain magnet.  相似文献   

8.
Reaction of H(2)salen (H(2)L) with Tb(OAc)(3).4H(2)O (3 : 2) in MeOH-MeCN under reflux gave homoleptic Tb(4)L(6) (1) in 40% yield; in contrast, similar reactions of Tb(NO(3))(3).6H(2)O and LnCl(3).6H(2)O (Ln = Tb, Nd and Yb) gave [TbL(NO(3))(MeOH)](2)(micro-H(2)L) (2) and [LnL(Cl)(MeOH)](2)(micro-H(2)L) (Ln = Tb (3), Nd (4) and Yb (5); H(2)L = N,N'-ethylenebis(salicylideneimine)).  相似文献   

9.
A new family of mixed-lanthanide cyano-bridged coordination polymers Ln(0.5)Ln'(0.5)(H(2)O)(5)[W(CN)(8)] (where Ln/Ln' = Eu(3+)/Tb(3+), Eu(3+)/Gd(3+), and Tb(3+)/Sm(3+)) containing two lanthanide and one transition metal ions were obtained and characterized by X-ray diffraction, photoluminescence spectroscopy, magnetic analyses, and theoretical computation. These compounds are isotypical and crystallize in the tetragonal system P4/nmm forming two-dimensional grid-like networks. They present a magnetic ordering at low temperature and display the red Eu(3+) ((5)D(0) → (7)F(0-4)) and green Tb(3+) ((5)D(4) → (7)F(6-2)) characteristic photoluminescence. The Tb(0.5)Eu(0.5)(H(2)O)(5)[W(CN)(8)] compound presents therefore green and red emission and shows Tb(3+)-to-Eu(3+) energy transfer.  相似文献   

10.
Wang X  Wang Y  Liu Q  Li Y  Yu J  Xu R 《Inorganic chemistry》2012,51(8):4779-4783
A family of novel 2D-layered lanthanide germanates K(3)[Tb(x)Eu(1-x)Ge(3)O(8)(OH)(2)] (x = 1, 0.88, 0.67, 0; denoted as TbGeO-JU-87, Tb(0.88)Eu(0.12)GeO-JU-87, Tb(0.67)Eu(0.33)GeO-JU-87, and EuGeO-JU-87) were synthesized under mild hydrothermal conditions in a concentrated gel system. They are isostructural, as confirmed by the powder X-ray diffraction analysis. The single-crystal X-ray diffraction analysis of EuGeO-JU-87 reveals that it is a 2D-layered [EuGe(3)O(8)(OH)(2)](n)(3n-) anionic framework, which is built up from GeO(4)H/GeO(4) tetrahedra and EuO(6) octahedra by sharing vertex O atoms. Charge neutrality is achieved by K(+) ions located in the free void space. Interestingly, photoluminescence studies show that Tb(0.88)Eu(0.12)GeO-JU-87 and Tb(0.67)Eu(0.33)GeO-JU-87 exhibit a high Tb(3+)-to-Eu(3+) energy-transfer efficiency and the Tb(x)Eu(1-x)GeO-JU-87 system displays tunable photoluminescent properties.  相似文献   

11.
Herein, a new aromatic carboxylate ligand, namely, 4-(dipyridin-2-yl)aminobenzoic acid (HL), has been designed and employed for the construction of a series of lanthanide complexes (Eu(3+) = 1, Tb(3+) = 2, and Gd(3+) = 3). Complexes of 1 and 2 were structurally authenticated by single-crystal X-ray diffraction and were found to exist as infinite 1D coordination polymers with the general formulas {[Eu(L)(3)(H(2)O)(2)]}(n) (1) and {[Tb(L)(3)(H(2)O)].(H(2)O)}(n) (2). Both compounds crystallize in monoclinic space group C2/c. The photophysical properties demonstrated that the developed 4-(dipyridin-2-yl)aminobenzoate ligand is well suited for the sensitization of Tb(3+) emission (Φ(overall) = 64%) thanks to the favorable position of the triplet state ((3)ππ*) of the ligand [the energy difference between the triplet state of the ligand and the excited state of Tb(3+) (ΔE) = (3)ππ* - (5)D(4) = 3197 cm(-1)], as investigated in the Gd(3+) complex. On the other hand, the corresponding Eu(3+) complex shows weak luminescence efficiency (Φ(overall) = 7%) due to poor matching of the triplet state of the ligand with that of the emissive excited states of the metal ion (ΔE = (3)ππ* - (5)D(0) = 6447 cm(-1)). Furthermore, in the present work, a mixed lanthanide system featuring Eu(3+) and Tb(3+) ions with the general formula {[Eu(0.5)Tb(0.5)(L)(3)(H(2)O)(2)]}(n) (4) was also synthesized, and the luminescent properties were evaluated and compared with those of the analogous single-lanthanide-ion systems (1 and 2). The lifetime measurements for 4 strongly support the premise that efficient energy transfer occurs between Tb(3+) and Eu(3+) in a mixed lanthanide system (η = 86%).  相似文献   

12.
Highly luminescent tris[β-diketonate (HFA, 1,1,1,5,5,5-hexafluoropentane-2,4-dione)] europium(III) complexes containing a chiral bis(oxazolinyl) pyridine (pybox) ligand--[(Eu(III)(R)-Ph-pybox)(HFA)(3)], [(Eu(III)(R)-i-Pr-pybox)(HFA)(3)], and [(Eu(III)(R)-Me-Ph-pybox)(HFA)(3)])--exhibit strong circularly polarized luminescence (CPL) at the magnetic-dipole ((5)D(0) → (7)F(1)) transition, where the [(Eu(III)(R)-Ph-pybox)(HFA)(3)] complexes show virtually opposite CPL spectra as compared to those with the same chirality of [(Eu(III)(R)-i-Pr-pybox)(HFA)(3)] and [(Eu(III)(R)-Me-Ph-pybox)(HFA)(3)]. Similarly, the [(Tb(III)(R)-Ph-pybox)(HFA)(3)] complexes were found to exhibit CPL signals almost opposite to those of [(Tb(III)(R)-i-Pr-pybox)(HFA)(3)] and [(Tb(III)(R)-Me-Ph-pybox)(HFA)(3)] complexes with the same pybox chirality. Single-crystal X-ray structural analysis revealed ligand-ligand interactions between the pybox ligand and the HFA ligand in each lanthanide(III) complex: π-π stacking interactions in the Eu(III) and Tb(III) complexes with the Ph-pybox ligand, CH/F interactions in those with the i-Pr-pybox ligand, and CH/π interactions in those with the Me-Ph-pybox ligand. The ligand-ligand interactions between the achiral HFA ligands and the chiral pybox results in an asymmetric arrangement of three HFA ligands around the metal center. The metal center geometry varies depending on the types of ligand-ligand interaction.  相似文献   

13.
A new 3D terbium(Ⅲ) metal-organic network[Tb(HIMDC)(HCOO)(H2O)]n (complex 1) has been synthesized by Tb3+ ions coordinated with 4,5-imidazole dicarboxylic acid ...  相似文献   

14.
The hydrothermal reaction of (L)-ethyl lactate (Lig-Et) with Tb(ClO(4))(3).6H(2)O gives colorless block (Lig)(2)Tb(H(2)O)(2)(ClO(4)) (1), in which 1 displays a laminar 2D framework. Ferroelectric and magnetic property measurements reveal that 1 probably is the first example of two "ferroic" metal-organic frameworks. Ferroelectricity of its analogue, (Lig)(2)Tb(D(2)O)(2)(ClO(4)) (2), further confirms the presence of the ferroelectric deuterium effect.  相似文献   

15.
Reactions of 1,4,7-triazacyclononane-1,4,7-triyl-tris(methylenephosphonic acid) [notpH(6), C(9)H(18)N(3)(PO(3)H(2))3] with different lanthanide salts result in four types of Ln-notp compounds: [Ln{C(9)H(20)N(3)(PO(3)H)(2)(PO(3))}(NO(3))(H(2)O)].4H2O (1), [Ln = Eu (1 Eu), Gd (1 Gd), Tb (1 Tb)], [Ln{C(9)H(20)N(3)(PO(3)H)(2)(PO(3))}(H2O)]Cl.3H2O (2) [Ln = Eu (2 Eu), Gd (2 Gd), Tb (2 Tb)], [Ln{C(9)H(20)N(3)(PO(3)H)(2)(PO(3))}(H2O)]ClO4.8H2O, (3) [Ln = Eu (3 Eu), Gd (3 Gd)], and [Ln{C(9)H(20)N(3)(PO(3)H)(2)(PO(3))}(H2O)]ClO4.3H2O (4), [Ln = Gd (4 Gd), Tb (4 Tb)]. Compounds within each type are isostructural. In compounds 1, dimers of {Ln2(notpH4)2(NO3)2(H2O)2} are found, in which the two lanthanide atoms are connected by two pairs of O-P-O and one pair of mu-O bridges. The NO3- ion serves as a bidentate terminal ligand. Compounds 2 contain similar dimeric units of {Ln2(notpH4)2(H2O)2} that are further connected by a pair of O-P-O bridges into an alternating chain. The Cl- ions are involved in the interchain hydrogen-bonding networks. A similar chain structure is also found in compounds 3; in this case, however, the chains are linked by ClO4- counterions through hydrogen-bonding interactions, forming an undulating layer in the (011) plane. These layers are fused through hydrogen-bonding interactions, leading to a three-dimensional supramolecular network with large channels in the [100] direction. Compounds 4 show an interesting brick-wall-like layer structure in which the neighboring lanthanide atoms are connected by a pair of O-P-O bridges. The ClO4- counterions and the lattice water molecules are between the layers. In all compounds the triazamacrocyclic nitrogen atoms are not coordinated to the Ln(III) ions. The anions and the pH are believed to play key roles in directing the formation of a particular structure. The fluorescence spectroscopic properties of the Eu and Tb compounds, magnetic properties of the Gd compounds, and the catalytic properties of 4 Gd were also studied.  相似文献   

16.
The LaXO(3):Tb(3+) (X = Al(3+), Ga(3+), In(3+)) perovskite nanoparticles were obtained using the nonhydrolytic treatment (Bradley reaction) of the molecular precursors of the La(O(i)Pr)(3), Al(O(i)Pr)(3), Ga(O(i)Pr)(3), In(5)O(O(i)Pr)(13), and Tb(acac)(3), respectively. It was shown that crystal structure and morphology evolution in the LaXO(3), X = Al, Ga, In nano-oxide series depended on the size and chemical properties of the X-metal atom. Formation of the LaInO(3):Tb(3+) nanoparticles is distinctly less thermodynamically demanding on contrary to the LaAlO(3):Tb(3+) and LaGaO(3):Tb(3+) since it provided crystalline product directly in the solution synthesis at 202 °C, which is the lowest reported synthesis temperature for this compound up-to-date. This behavior was ascribed to the effects directly connected with the dopant substitution (exchange of bigger La(3+) cation with smaller Tb(3+)) as well as reduction of the particle size. The size effects are mostly reflected in the expansion of the cell volume, changes of the cell parameters as well as shifting and broadening of the Raman bands. Indirectly, size reduction has also an effect on the luminescence properties through the higher probability of presence of surface and net defects as well as heterogeneous distribution of the Tb(3+) ions caused by high surface-to-volume ratio. The prepared nanophosphors show basically green emission with exception of white-green in case of the LaInO(3):Tb(3+). Strong emission quenching was found in the latter case being most likely a consequence of the nonradiative energy transfer between Tb(3+) and In(3+) as well as the presence of defects. In comparison to the Pechini's method, the LaXO(3) nanoparticles required significantly lower annealing temperature (700 °C) necessary for complete crystallization. Generally the resulting particles are distinctly smaller (5 to 25 nm) and less agglomerated (50-100 nm) depending on the reaction conditions as well as thermal treatment. For the first time, it was shown that the LaGaO(3):Tb(3+) nanopowder has crystallized in the high-temperature rhombohedral R3c phase.  相似文献   

17.
Xie M  Tao Y  Huang Y  Liang H  Su Q 《Inorganic chemistry》2010,49(24):11317-11324
The VUV-vis spectroscopic properties of Tb(3+) activated fluoro-apatite phosphors Ca(6)Ln(2-x)Tb(x)Na(2)(PO(4))(6)F(2) (Ln = Gd, La) were studied. The results show that phosphors Ca(6)Gd(2-x)Tb(x)Na(2)(PO(4))(6)F(2) with Gd(3+) ions as sensitizers have intense absorption in the VUV range. The emission color of both phosphors can be tuned from blue to green by changing the doping concentration of Tb(3+) under 172 nm excitation. The visible quantum cutting (QC) via cross relaxation between Tb(3+) ions was observed in cases with and without Gd(3+). Though QC can be realized in phosphors Ca(6)La(2-x)Tb(x)Na(2)(PO(4))(6)F(2), we found that Gd(3+)-containg phosphors have a higher QC efficiency, confirming that the Gd(3+) ion indeed plays an important role during the quantum cutting process. In addition, the energy transfer process from Gd(3+) to Tb(3+) as well as (5)D(3)-(5)D(4) cross relaxation was investigated and discussed in terms of luminescence spectra and decay curves.  相似文献   

18.
Two pairs of Ni(2)Dy(2) and Ni(2)Tb(2) complexes, [Ni(2)Ln(2)(L)(4)(NO(3))(2)(DMF)(2)] {Ln = Dy (1), Tb (2)} and [Ni(2)Ln(2)(L)(4)(NO(3))(2)(MeOH)(2)]·3MeOH {Ln = Dy (3), Tb (4)} (H(2)L is the Schiff base resulting from the condensation of o-vanillin and 2-aminophenol) possessing a defect-dicubane core topology were synthesized and characterized. All four complexes are ferromagnetically coupled, and the two Dy-analogues are found to be Single Molecule Magnets (SMMs) with energy barriers in the range 18-28 K. Compound 1 displays step-like hysteresis loops, confirming the SMM behavior. Although 1 and 3 show very similar structural topologies, the dynamic properties of 1 and 3 are different with blocking temperatures (3.2 and 4.2 K at a frequency of 1500 Hz) differing by 1 K. This appears to result from a change in orientation of the nitrate ligands on the Dy(III) ions, induced by changes in ligands on Ni(II).  相似文献   

19.
Two assemblies composed of single-molecule magnets (SMMs) linked by photochromic ligands, [Cu(II)(2)Tb(III)(2)(L)(2)(NO(3))(2)(dae-o)(2)]·2(n-BuOH) (1) and {[Cu(II)Tb(III)(L)(n-BuOH)(0.5)](2)(dae-c)(3)}·5(DMF)·4(n-BuOH)·2(H(2)O) (2), were synthesized by reacting the SMM [Cu(II)Tb(III)(L)(NO(3))(3)] (H(2)L = 1,3-bis((3-methoxysalicylidene)amino)propane) and photochromic molecules, H(2)dae-o and H(2)dae-c, which are open- and closed-ring isomers of 1,2-bis(5-carboxyl-2-methyl-3-thienyl)perfluoropentene (H(2)dae), respectively. 1 has a tetranuclear ring-like structure comprised of two [CuTb] units and two dae-o(2-) ligands. On the other hand, 2 has a one-dimensional ladder-type structure involving the [CuTb] and dae-c(2-) units in a 3?:?2 ratio. Magnetic studies revealed that 1 and 2 had ferromagnetic interactions between the Cu(II) and Tb(III) ions and that both compounds exhibited frequency dependence of ac susceptibilities owing to freezing the magnetization of the [CuTb] SMM. Upon irradiation with ultraviolet light and visible light, an absorption band at ~600 nm changed, indicating that photochromic reactions involving the dae(2-) ligands occurred. After irradiation, the magnetic behaviour of 1 did not change, whereas magnetic behaviour of 2 changed, due to the modification of intermolecular environment.  相似文献   

20.
The syntheses are reported for two novel Tb(3+) heterotrimetallic cyanometallates, K(2)[Tb(H(2)O)(4)(Pt(CN)(4))(2)]Au(CN)(2)·2H(2)O (1) and [Tb(C(10)N(2)H(8))(H(2)O)(4)(Pt(CN)(4))(Au(CN)(2))]·1.5C(10)N(2)H(8)·2H(2)O (2) (C(10)N(2)H(8) = 2,2'-bipyridine). Both compounds have been isolated as colorless crystals, and single-crystal X-ray diffraction has been used to investigate their structural features. Crystallographic data (MoKα, λ = 0.71073 ?, T = 290 K): 1, tetragonal, space group P4(2)/nnm, a = 11.9706(2) ?, c = 17.8224(3) ?, V = 2553.85(7) ?(3), Z = 4; 2, triclinic, space group P1, a = 10.0646(2) ?, b = 10.7649(2) ?, c = 17.6655(3) ?, α = 101.410(2)°, β = 92.067(2)°, γ = 91.196(2)°, V = 1874.14(6) ?(3), Z = 2. For the case of 1, the structure contains Au(2)Pt(4) hexameric noble metal clusters, while 2 includes Au(2)Pt(2) tetrameric clusters. The clusters are alike in that they contain Au-Au and Au-Pt, but not Pt-Pt, metallophilic interactions. Also, the discrete clusters are directly coordinated to Tb(3+) and sensitize its emission in both solid-state compounds, 1 and 2. The Photoluminescence (PL) spectra of 1 show broad excitation bands corresponding to donor groups when monitored at the Tb(3+) ion f-f transitions, which is typical of donor/acceptor energy transfer (ET) behavior in the system. The compound also displays a broad emission band at ~445 nm, assignable to a donor metal centered (MC) emission of the Au(2)Pt(4) clusters. The PL properties of 2 show a similar Tb(3+) emission in the visible region and a lack of donor-based emission at room temperature; however, at 77 K a weak, broad emission occurs at 400 nm, indicative of uncoordinated 2,2'-bipyridine, along with strong Tb(3+) transitions. The absolute quantum yield (QY) for the Tb(3+) emission ((5)D(4) → (7)F(J (J = 6-3))) in 1 is 16.3% with a lifetime of 616 μs when excited at 325 nm. In contrast the weak MC emission at 445 nm has a quantum yield of 0.9% with a significantly shorter lifetime of 0.61 μs. For 2 the QY value decreases to 9.3% with a slightly shorter lifetime of 562 μs. The reduced QY in 2 is considered to be a consequence of (1) the slightly increased donor-acceptor excited energy gap relative to the optimal gap suggested for Tb(3+) and (2) Tb(3+) emission quenching via a bpy ligand-to-metal charge transfer (LMCT) excited state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号