首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We have established a convenient method for the base‐promoted direct amination of β‐unsubstituted 5,15‐diazaporphyrins (DAPs) with secondary and primary amines to produce 3,7,13,17‐tetraamino‐ and 3‐amino‐DAPs, respectively, regioselectively. The amino groups attached at the periphery cause significant red shifts of the absorption bands as a result of their perturbation of the HOMO and/or LUMO in the DAP π‐system. The palladium complex of a 3,7,13,17‐tetrakis(diphenylamino)‐DAP generated singlet oxygen in high yield under irradiation with near‐infrared light.  相似文献   

2.
A new class of near‐infrared (NIR)‐absorptive (>900 nm) photosensitizer based on a phenothiazinium scaffold is reported. The stable solid compound, o‐DAP, the oxidative form of 3,7‐bis(4‐methylaminophenyl)‐10H‐phenothiazine, can generate reactive oxygen species (ROS, singlet oxygen and superoxide) under appropriate irradiation conditions. After biologically evaluating the intracellular uptake, localization, and phototoxicity of this compound, it was concluded that o‐DAP is photostable and a potential selective photodynamic therapy (PDT) agent under either NIR or white light irradiation because its photodamage is more efficient in cancer cells than in normal cells and is without significant dark toxicity. This is very rare for photosensitizers in PDT applications.  相似文献   

3.
《化学:亚洲杂志》2017,12(17):2197-2201
A novel photodynamic therapy nanoplatform based on mesoporous‐silica‐coated upconverting nanoparticles (UCNP) with electrostatic‐driven ultrafast photosensitizer (PS) loading and 808 nm near infrared (NIR)‐light‐triggering capabilities has been fabricated. By positively charging inner channels of the mesoporous silica shell with amino groups, a quantitative dosage of negatively charged PS, exemplified with Rose Bengal (RB) molecules, can be loaded in 2 min. In addition, the electrostatic‐driven technique simultaneously provides the platform with both excellent PS dispersity and leak‐proof properties due to the repulsion between the same‐charged molecules and the electrostatic attraction between different‐charged PS and silica channel walls, respectively. The as‐coated silica shell with an ultrathin thickness of 12±2 nm is delicately fabricated to facilitate ultrafast PS loading and efficient energy transfer from UCNP to PS. The outside surface of the silica shell is capped with hydrophilic β‐cyclodextrin, which not only enhances the dispersion of resulting nanoparticles in water but also plays a role of “gatekeeper”, blocking the pore opening and preventing PS leaking. The in vitro cellular lethality experiment demonstrates that RB molecules can be activated to effectively generate singlet oxygen and kill cancer cells upon 808 nm NIR light irradiation.  相似文献   

4.
In this study, we report a novel polysaccharidic drug conjugate consisting of poly(β‐cyclodextrin) [poly(β‐CD)] with gas‐forming carbonate linkages resulting from the chemical coupling of the hydroxyl groups of poly(β‐CD) and cholesteryl chloroformate (CC) and a photosensitizing drug (chlorin e6: Ce6). This drug conjugate was self‐assembled in aqueous solution leading to the production of nanoparticles containing the poly(β‐CD) on the hydrophilic outer shell and CC and Ce6 in the hydrophobic inner core. Cleavage (i.e. the detachment of CC moieties) of the carbonate linkage at a slightly acidic pH (~pH 6.5) produced carbon dioxide bubbles. More specifically, the nanoparticles (with autoquenched Ce6 molecules in their core at pH 7.4) were destabilized at pH 6.5, thereby dequenching the Ce6 molecules. These experimental results demonstrate that under light illumination the nanoparticles increased singlet oxygen generation at pH 6.5 compared to pH 7.4 and exhibited a higher phototoxicity for KB tumor cells at pH 6.5 compared to pH 7.4. This approach represents an effective photodynamic therapy for acidic tumors. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
We report the synthesis, crystallographic, optical, and triplet and singlet oxygen generation properties of a series of BF2‐rigidified partially closed chain bromotetrapyrroles as near infrared emitters and photosensitizers. These novel dyes were efficiently synthesized from a nucleophilic substitution reaction between pyrroles and the 3,5‐bromo‐substituents on the tetra‐ and hexabromoBODIPYs and absorb in the near‐infrared region (681–754 nm) with high molar extinction coefficients. Their fluorescent emission (708–818 nm) and singlet oxygen generation properties are significantly affected by alkyl substitutions on the two uncoordinated pyrrole units of these dyes and the polarity of solvents. Among them, dyes 4 ca and 4 da show good singlet oxygen generation efficiency and good NIR fluorescence emission (fluorescence quantum yields of 0.14–0.43 in different solvents studied).  相似文献   

6.
Controlled generation of cytotoxic agents with near‐IR light is a current focus of photoactivated cancer therapy, including that involving cytotoxic platinum species. A heptamethine cyanine scaffolded PtII complex, IR797‐Platin exhibits unprecedented Pt?O bond scission and enhancement in DNA platination in near‐IR light. This complex also displayed significant singlet oxygen quantum yield thereby qualifying as a near‐IR photodynamic therapeutic agent. The complex showed 30–60 fold enhancement of cytotoxicity in near‐IR light in various cancer cell lines. The cellular imaging properties were also leveraged to observe its significant co‐localization in cytoplasmic organelles. This is the first demonstration of a near‐IR light‐initiated therapy involving the cytotoxic effects of both active cisplatin and singlet oxygen.  相似文献   

7.
A highly efficient and general singlet‐oxygen‐initiated one‐pot transformation of readily accessible furans into 5‐hydroxy‐1H‐pyrrol‐2(5H)‐ones has been developed. The methodology was extended to the synthesis of other high‐value α,β‐unsaturated γ‐lactams. This useful set of transformations relies not only on the photosensitizing ability of methylene blue, but also on its redox properties: properties that have until now been virtually ignored in a synthetic context.  相似文献   

8.
A ligand incorporating a dithioethenyl moiety is cleaved into fragments which have a lower metal‐ion affinity upon irradiation with low‐energy red/near‐IR light. The cleavage is a result of singlet oxygen generation which occurs on excitation of the photosensitizer modules. The method has many tunable factors that could make it a satisfactory caging strategy for metal ions.  相似文献   

9.
A ligand incorporating a dithioethenyl moiety is cleaved into fragments which have a lower metal‐ion affinity upon irradiation with low‐energy red/near‐IR light. The cleavage is a result of singlet oxygen generation which occurs on excitation of the photosensitizer modules. The method has many tunable factors that could make it a satisfactory caging strategy for metal ions.  相似文献   

10.
To harvest energy from the near‐infrared (near‐IR) and infrared (IR) regions of the electromagnetic spectrum, which constitutes nearly 70 % of the solar radiation, there is a great demand for near‐IR and IR light‐absorbing sensitizers that are capable of undergoing ultrafast photoinduced electron transfer when connected to a suitable electron acceptor. Towards achieving this goal, in the present study, we report multistep syntheses of dyads derived from structurally modified BF2‐chelated azadipyrromethene (ADP; to extend absorption and emission into the near‐IR region) and fullerene as electron‐donor and electron‐acceptor entities, respectively. The newly synthesized dyads were fully characterized based on optical absorbance, fluorescence, geometry optimization, and electrochemical studies. The established energy level diagram revealed the possibility of electron transfer either from the singlet excited near‐IR sensitizer or singlet excited fullerene. Femtosecond and nanosecond transient absorption studies were performed to gather evidence of excited state electron transfer and to evaluate the kinetics of charge separation and charge recombination processes. These studies revealed the occurrence of ultrafast photoinduced electron transfer leading to charge stabilization in the dyads, and populating the triplet states of ADP, benzanulated‐ADP and benzanulated thiophene‐ADP in the respective dyads, and triplet state of C60 in the case of BF2‐chelated dipyrromethene derived dyad during charge recombination. The present findings reveal that these sensitizers are suitable for harvesting light energy from the near‐IR region of the solar spectrum and for building fast‐responding optoelectronic devices operating under near‐IR radiation input.  相似文献   

11.
We functionalize PbS nanocrystals with the organic semiconductor Zn β‐tetraaminophthalocyanine to design a nanostructured solid‐state material with frequent organic–inorganic interfaces. By transient absorption and fluorescence spectroscopy, we investigate the optoelectronic response of this hybrid material under near‐infrared excitation to find efficient charge transfer from the nanocrystals to the molecules. We demonstrate that the material undergoes cooperative sensitization of two nanocrystals followed by photon upconversion and singlet emission of the organic semiconductor. The upconversion efficiency resembles that of comparable systems in solution, which we attribute to the large amount of interfaces present in this solid‐state film. We anticipate that this synthetic strategy has great prospects for increasing the open‐circuit voltage in PbS nanocrystal‐based solar cells.  相似文献   

12.
Triplet photosensitizers that generate singlet oxygen efficiently are attractive for applications such as photodynamic therapy (PDT). Extending the absorption band to a near‐infrared (NIR) region (700 nm≈) with reasonable photostability is one of the major demands in the rational design of such sensitizers. We herein prepared a series of mono‐ and bis‐palladium complexes ( 1‐Pd‐H2 , 2‐Pd‐H2 , 1‐Pd‐Pd , and 2‐Pd‐Pd ) based on modified calix[6]phyrins as photosensitizers for singlet oxygen generation. These palladium complexes showed intense absorption profiles in the visible‐to‐NIR region (500–750 nm) depending on the number of central metals. Upon photoirradiation in the presence of 1,5‐dihydroxynaphthalene (DHN) as a substrate for reactive oxygen species, the bis‐palladium complexes generated singlet oxygen with high efficiency and excellent photostability. Singlet oxygen generation was confirmed from the characteristic spectral feature of the spin trapped complex in the EPR spectrum and the intact 1O2 emission at 1270 nm.  相似文献   

13.
Tumor hypoxia greatly suppresses the therapeutic efficacy of photodynamic therapy (PDT), mainly because the generation of toxic reactive oxygen species (ROS) in PDT is highly oxygen‐dependent. In contrast to ROS, the generation of oxygen‐irrelevant free radicals is oxygen‐independent. A new therapeutic strategy based on the light‐induced generation of free radicals for cancer therapy is reported. Initiator‐loaded gold nanocages (AuNCs) as the free‐radical generator were synthesized. Under near‐infrared light (NIR) irradiation, the plasmonic heating effect of AuNCs can induce the decomposition of the initiator to generate alkyl radicals (R.), which can elevate oxidative‐stress (OS) and cause DNA damages in cancer cells, and finally lead to apoptotic cell death under different oxygen tensions. As a proof of concept, this research opens up a new field to use various free radicals for cancer therapy.  相似文献   

14.
Currently, photosensitizers (PSs) that are microenvironment responsive and hypoxia active are scarcely available and urgently desired for antitumor photodynamic therapy (PDT). Presented herein is the design of a redox stimuli activatable metal‐free photosensitizer (aPS), also functioning as a pre‐photosensitizer as it is converted to a PS by the mutual presence of glutathione (GSH) and hydrogen peroxide (H2O2) with high specificity on a basis of domino reactions on the benzothiadiazole ring. Superior to traditional PSs, the activated aPS contributed to efficient generation of reactive oxygen species including singlet oxygen and superoxide ion through both type 1 and type 2 pathways, alleviating the aerobic requirement for PDT. Equipped with a triphenylphosphine ligand for mitochondria targeting, mito aPS showed excellent phototoxicity to tumor cells with low light fluence under both normoxic and hypoxic conditions, after activation by intracellular GSH and H2O2. The mito aPS was also compatible to near infrared PDT with two photon excitation (800 nm) for extensive bioapplications.  相似文献   

15.
Herein, for the first time, we present the successful synthesis of a novel two‐dimensional corrole‐based covalent organic framework (COF) by reacting the unusual approximately T‐shaped 5,10,15‐tris(p‐aminophenyl)corrole H3TPAPC with terephthalaldehyde, which adopts desymmetrized hcb topology and consists of a staggered AB stacking structure with elliptical pores. The resultant corrole‐based COF, TPAPC‐COF , exhibits high crystallinity and excellent chemical stability. The combination of extended π‐conjugated backbone and interlayer noncovalent π–π interactions endows TPAPC‐COF with excellent absorption capability in the entire visible‐light and even near‐infrared regions. Moreover, this work suggests the promise of TPAPC‐COF as a new class of photoactive material for efficient singlet‐oxygen generation with potential photodynamic therapy application as demonstrated by in vitro anticancer studies.  相似文献   

16.
We report herein a simple and efficient approach to the synthesis of a variety of meso‐substituted purpurinimides. The reaction of meso ‐ substituted purpurinimide with N‐bromosuccinimide regioselectively introduced a bromo functionality at the 20‐position, which on further reaction with a variety of boronic acids under Suzuki reaction conditions yielded the corresponding meso‐substituted analogues. Interestingly, the free base and the metalated analogues showed remarkable differences in photosensitizing efficacy (PDT) and tumor‐imaging ability. For example, the free‐base conjugate showed significant in vitro PDT efficacy, but limited tumor avidity in mice bearing tumors, whereas the corresponding NiII derivative did not produce any cell kill, but showed excellent tumor‐imaging ability at a dose of 0.3 μmol kg?1 at 24, 48, and 72 h post‐injection. The limited PDT efficacy of the NiII analogue could be due to its inability to produce singlet oxygen, a key cytotoxic agent required for cell kill in PDT. Based on electrochemical and spectroelectrochemical data in DMSO, the first one‐electron oxidation (0.52 V vs. SCE) and the first one‐electron reduction (?0.57–0.67 V vs. SCE) of both the free base and the corresponding NiII conjugates are centered on the cyanine dye, whereas the second one‐electron reduction (?0.81 V vs. SCE) of the two conjugates is assigned to the purpurinimide part of the molecule. Reduction of the cyanine dye unit is facile and occurs prior to reduction of the purpurinimide group, which suggests that the cyanine dye unit as an oxidant could be the driving force for quenching of the excited triplet state of the molecules. An interaction between the cyanine dye and the purpurinimide group is clearly observed in the free‐base conjugate, which compares with a negligible interaction between the two functional groups in the NiII conjugate. As a result, the larger HOMO–LUMO gap of the free‐base conjugate and the corresponding smaller quenching constant is a reason to decrease the intramolecular quenching process and increase the production of singlet oxygen to some degree.  相似文献   

17.
Remote and minimally‐invasive modulation of biological systems with light has transformed modern biology and neuroscience. However, light absorption and scattering significantly prevents penetration to deep brain regions. Herein, we describe the use of gold‐coated mechanoresponsive nanovesicles, which consist of liposomes made from the artificial phospholipid Rad‐PC‐Rad as a tool for the delivery of bioactive molecules into brain tissue. Near‐infrared picosecond laser pulses activated the gold‐coating on the surface of nanovesicles, creating nanomechanical stress and leading to near‐complete vesicle cargo release in sub‐seconds. Compared to natural phospholipid liposomes, the photo‐release was possible at 40 times lower laser energy. This high photosensitivity enables photorelease of molecules down to a depth of 4 mm in mouse brain. This promising tool provides a versatile platform to optically release functional molecules to modulate brain circuits.  相似文献   

18.
This study reports that photosensitizers encapsulated in supramolecular protein cages can be internalized by tumor cells and can deliver singlet oxygen intracellularly for photodynamic therapy (PDT). As an alternative to other polymeric and/or inorganic nanocarriers and nanoconjugates, which may also deliver photosensitizers to the inside of the target cells, protein nanocages provide a unique vehicle of biological origin for the intracellular delivery of photosensitizing molecules for PDT by protecting the photosensitizers from reactive biomolecules in the cell membranes, and yet providing a coherent, critical mass of destructive power (by way of singlet oxygen) upon specific light irradiation for photodynamic therapy of tumor cells. As a model, we demonstrated the successful encapsulation of methylene blue (MB) in apoferritin via a dissociation–reassembly process controlled by pH. The resulting MB-containing apoferritin nanocages show a positive effect on singlet oxygen production, and cytotoxic effects on MCF-7 human breast adenocarcinoma cells when irradiated at the appropriate wavelength (i.e. 633 nm).  相似文献   

19.
Reversible emission color switching of triplet–triplet annihilation‐based photon upconversion (TTA‐UC) is achieved by employing an Os complex sensitizer with singlet‐to‐triplet (S‐T) absorption and an asymmetric luminescent cyclophane with switchable emission characteristics. The cyclophane contains the 9,10‐bis(phenylethynyl)anthracene unit as an emitter and can assemble into two different structures, a stable crystalline phase and a metastable supercooled nematic phase. The two structures exhibit green and yellow fluorescence, respectively, and can be accessed by distinct heating/cooling sequences. The hybridization of the cyclophane with the Os complex allows near‐infrared‐to‐visible TTA‐UC. The large anti‐Stokes shift is possible by the direct S‐T excitation, which dispenses with the use of a conventional sequence of singlet–singlet absorption and intersystem crossing. The TTA‐UC emission color is successfully switched between green and yellow by thermal stimulation.  相似文献   

20.
The facile synthesis of Group 9 RhIII porphyrin‐aza‐BODIPY conjugates that are linked through an orthogonal Rh?C(aryl) bond is reported. The conjugates combine the advantages of the near‐IR (NIR) absorption and intense fluorescence of aza‐BODIPY dyes with the long‐lived triplet states of transition metal rhodium porphyrins. Only one emission peak centered at about 720 nm is observed, irrespective of the excitation wavelength, demonstrating that the conjugates act as unique molecules rather than as dyads. The generation of a locally excited (LE) state with intramolecular charge‐transfer (ICT) character has been demonstrated by solvatochromic effects in the photophysical properties, singlet oxygen quantum yields in polar solvents, and by the results of density functional theory (DFT) calculations. In nonpolar solvents, the RhIII conjugates exhibit strong aza‐BODIPY‐centered fluorescence at around 720 nm (ΦF=17–34 %), and negligible singlet oxygen generation. In polar solvents, enhancements of the singlet‐oxygen quantum yield (ΦΔ=19–27 %, λex=690 nm) have been observed. Nanosecond pulsed time‐resolved absorption spectroscopy confirms that relatively long‐lived triplet excited states are formed. The synthetic methodology outlined herein provides a useful strategy for the assembly of functional materials that are highly desirable for a wide range of applications in material science and biomedical fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号