首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thiosemicarbazones of 2-amino-5-chlorobenzophenone and 3-aminobenzophenone(L1-L4) have been synthesized and their Cu(Ⅱ) complexes(1-4) were afforded via coordination with cupric chloride.All these compounds were characterized by UV-vis and IR spectroscopy together with CHN elemental analysis.NMR spectroscopy was also applied to characterize the ligands.In vitro chohnesterase inhibitory assays for the complexes(1-4) showed IC50 values less than 10μmol/L,with complex 1 exhibiting the most activity,IC50=2.15μmol/L and 2.16μmol/L for AChE and BuChE,respectively. Molecular modeling simulation revealed the binding interaction template for complex 1 with the AChE and BuChE receptors.In DPPH assay,the complexes also showed more in vitro antioxidant activities in comparison to their parent ligands.  相似文献   

2.
The vibrational spectra of nitrogen monoxide or nitric oxide (NO) bonded to one or to several transition-metal (M) atom(s) in coordination and cluster compounds are analyzed in relation to the various types of such structures identified by diffraction methods. These structures are classified in: (a) terminal (linear and bent) nitrosyls, [M(σ-NO)] or [M(NO)]; (b) twofold nitrosyl bridges, [M22-NO)]; (c) threefold nitrosyl bridges, [M33-NO)]; (d) σ/π-dihaptonitrosyls or “side-on” nitrosyls; and (e) isonitrosyls (oxygen-bonded nitrosyls).Typical ranges for the values of internuclear N–O and M–N bond-distances and M–N–O bond-angles for linear nitrosyls are: 1.14–1.20 Å/1.60–1.90 Å/180–160° and for bent nitrosyls are 1.16–1.22 Å/1.80–2.00 Å/140–110°. The [M22-NO)] bridges have been divided into those that contain one or several metal–metal bonds and those without a formal metal/metal bond (M?M). Typical ranges for the M–M, N–O, M–N bond distances and M–N–M bond angles for the normal twofold NO bridges are: 2.30–3.00 Å/1.18–1.22 Å/1.80–2.00 Å/90–70°, whereas for the analogous ranges of the long twofold NO bridges these are 3.10–3.40 Å/1.20–1.24 Å/1.90–2.10 Å/130–110°. In both situations the N–O vector is approximately at right angle to the M–M (or M?M) vector within the experimental error; i.e. the NO group is symmetrical bonded to the two metal atoms. In contrast the threefold NO bridges can be symmetrically or unsymmetrically bonded to an M3-plane of a cluster compound. Characteristic values for the N–O and M–N bond-distances of these NO bridges are: 1.24–1.28 Å/1.80–1.90 Å, respectively. As few dihaptonitrosyl and isonitrosyl complexes are known, the structural features of these are discussed on an individual basis.The very extensive vibrational spectroscopy literature considered gives emphasis to the data from linearly bonded NO ligands in stable closed-shell metal complexes; i.e. those which are consistent with the “effective atomic number (EAN)” or “18-electron” rule. In the paucity of enough vibrational spectroscopic data from complexes with only nitrosyl ligands, it turned out to be very advantageous to use wavenumbers from the spectra of uncharged and saturated nitrosyl/carbonyl metal complexes as references, because the presence of a carbonyl ligand was found to be neutral in its effect on the ν(NO)-values. The wide wavenumber range found for the ν(NO) values of linear MNO complexes are then presented in terms of the estimated effects of net ionic charges, or of electron-withdrawing or electron-donating ligands bonded to the same metal atom. Using this approach we have found that: (a) the effect for a unit positive charge is [plus 100 cm?1] whereas for a unit negative charge it is [minus 145 cm?1]. (b) For electron-withdrawing co-ligands the estimated effects are: terminal CN [plus 50 cm?1]; terminal halogens [plus 30 cm?1]; bridging or quasi-bridging halogens [plus 15 cm?1]. (c) For electro donating co-ligands they are: PF3 [plus 10 cm?1]; P(OPh)3 [?30 cm?1]; P(OR)3 (R = alkyl group) [?40 cm?1]; PPh3 [?55 cm?1]; PR3 (R = alkyl group) [?70 cm?1]; and η5-C5H5 [?60 cm?1]; η5-C5H4Me [?70 cm?1]; η5-C5Me5 [?80 cm?1]. These values were mostly derived from the spectra of nitrosyl complexes that have been corrected for the presence of only a single electronically-active co-ligand. After making allowance for ionic charges or strongly-perturbing ligands on the same metal atom, the adjusted ‘neutral-co-ligand’ ν(NO)*-values (in cm?1) are for linear nitrosyl complexes with transition metals of Period 4 of the Periodic Table, i.e. those with atomic orbitals (…4s3d4p): [ca. 1750, Cr(NO)]; [1775,Mn(NO)]; [1796,Fe(NO)]; [1817,Co(NO)]; [ca. 1840, Ni(NO)]. Period 5 (…5s4d5p): [1730 Mo(NO)]; [—, Tc(NO)]; [1745,Ru(NO)]; [1790,Rh(NO)]; [ca. 1845, Pd(NO)]. Period 6 (…6s4f5d6p), [1720,W(NO)]; [1730,Re(NO)]; [1738,Os(NO)]; [1760,Ir(NO)]; [—, Pt] respectively. Environmental differences to these values, e.g. data taken in polar solutions or in the crystalline state, can cause ν(NO)* variations (mostly reductions) of up to ca. 30 cm?1.Three spectroscopic criteria are used to distinguish between linear and bent NO groups. These are: (i) the values of ν(14NO) themselves, and (ii) the isotopic band shift – (IBS) – parameter which is defined as [ν(14NO)–ν(15NO)], and, (iii) the isotopic band ratio – (IBR) – given by [ν(15NO/ν14NO)]. The former is illustrated with the ν(14NO)-data from trigonal bipyramidal (TBP) and tetragonal pyramidal (TP) structures of [M(NO(L)4] complexes (where M = Fe, Co, Ru, Rh, Os, Ir and L = ligand). These values indicate that linear (180–170°) and strongly bent (130–120°) NO groups in these compounds absorb over the 1862–1690 cm?1 and 1720–1525 cm?1-regions, respectively. As was explicitly demonstrated for the linear nitrosyls, these extensive regions reflect the presence in different complexes of a very wide range of co-ligands or ionic charges associated with the metal atom of the nitrosyl group. A plot of the IBS parameter against M–N–O bond-angle for compounds with general formulae [M(NO)(L)y] (y = 4, 5, 6) reveals that the IBS-values are clustered between 45 and 30 cm?1 or between 37 and 25 cm?1 for linear or bent NO groups, respectively. A plot of IBR shows a less well defined pattern. Overall it is suggested that bent nitrosyls absorb ca. 60–100 cm?1 below, and have smaller co-ligand band-shifts, than their linear counterparts.Spectroscopic ν(NO) data of the bridging or other types of NO ligands are comparatively few and therefore it has not been possible to give other than general ranges for ‘neutral co-ligand’ values. Moreover the bridging species data often depend on corrections for the effects of electronically-active co-ligands such as cyclopentadienyl-like groups. The derived neutral co-ligand estimates, ν(NO)*, are: (a) twofold bridged nitrosyls with a metal–metal bond order of one, or greater than one, absorb at ca. 1610–1490 cm?1; (b) twofold bridged nitrosyl ligands with a longer non-bonding M?M distance, ca. 1520–1490 cm?1; (c) threefold bridged nitrosyls, ca. 1470–1410 cm?1; (d) σ/π dihaptonitrosyl, [M(η2-NO)], where M = Cr, Mn and Ni; ca. 1490–1440 cm?1. Isonitrosyls, from few examples, appear to absorb below ca. 1100 cm?1.To be published DFT calculations of the infrared and Raman spectra of complexes with formulae [M(NO)4?n(CO)n] (M = Cr, Mn, Fe, Co, Ni, and n = 0, 1, 2, 3, 4, respectively) are used as models for the assignments of the ν(MN) and δ(MNO) bands from more complex metal nitrosyls.  相似文献   

3.
The UV–vis spectra of recently synthesized 5-benzoyl-1-(methylphenylmethyleneamino)-4-phenyl-1H-pyrimidine-2-one, (I), and 5-benzoyl-1-(methylphenylmethyleneamino)-4-phenyl-1H-pyrimidine-2-thione, (II) were studied in aqueous methanol (5%, v/v methanol). The nature of the electronic transitions and the roles of carbonyl oxygen of I and thiocarbonyl sulfur of II on the behavior of UV–vis spectra were discussed.Acid–base equilibria of the compounds against varying pH and pKa values related equilibria were determined at an ionic strength of 0.10 M by using the Henderson–Haselbalch equation. The mean acidity constants for the protonated forms of the compounds were determined as pKa1 = 5.121, pKa2 = 7.929 and pKa3 = 11.130 for I and pKa1 = 4.684, pKa2 = 7.245 and pKa3 = 10.630 for II. The preferred dissociation mechanisms were discussed based on UV–vis data and a mechanism was proposed for each compound.  相似文献   

4.
The title complex l-[Cu4(Hvap)2(vap)2(MeOH)2](CIO42 1 has been synthesized and characterized by EA. IR,TGA,solid-state CD spectra and X-ray single-crystal analyses(l-H2vap’.a Schiff base ligand derived from the condensation of o-vanillin and l-2-amino-3-phenyl-l-propanol).Complex 1 crystallizes in monoclinic system,chiral space group P21 with a =10.4257(18).b = 21.695(4),c = 15.721(3)A,β= 94.443(3).V= 3545.1(11) 3,Z=2,Cu4C70H78N4O22Cl2.Mr= 1652.42,Dc= 1.548 g/cm3, F(000)= 1704 andμ(MoKα) = 1.338 mm-1.The final R = 0.0682 and wR = 0.1420 for 6170 observed reflections with I > 2σ(I) and R = 0.1775 and wR = 0.1830 for all data.The structure of complex 1 contains a boat-shaped(Cu4O4} motif.The solid-state CD spectra confirm the chiral nature of complex 1.  相似文献   

5.
Equilibrium studies have been carried out on complex formation of M(II) (M = Co(II), Cu(II) and Zn(II)) with tricine (Tn) and L = amino acids in aqueous solution, at 25 °C and ionic strength of I = 0.1 M (NaNO3). The ternary complexes of amino acids are formed by simultaneous reactions. The concentration distribution of the complexes is evaluated. The solid complexes of [M(II)–Tn–Histidine (Hist)] have been synthesized and characterized by elemental analysis, infrared, magnetic and conductance measurements. The synthesized complexes have been screened for their antibacterial activities and the complexes show a significant antibacterial activity against four bacterial species: Staphylococcus aureus (Gram +ve), Streptococcus pyogenesr (Gram +ve), Serratia marcescens (Gram −ve) and Escherichia coli (Gram −ve). The activity increases by increasing the concentration of the complexes.  相似文献   

6.
《Polyhedron》2005,24(6):723-729
The mixed ligand complex [La(hfa)3(Phen)2] (I) was obtained by the interaction of La(hfa)3 and Phen; its composition does not depend on the stoichiometry of the reagents. According to the X-ray single crystal analysis data, complex I crystallizes in the monoclinic space group P21/n, with a = 13.583(3) Å, b = 16.959(3) Å, c = 18.860(4) Å, β = 94.71(3)° and Z = 4. The structure of I consists of isolated mononuclear molecules, the coordination number of La being 10. Thermal behaviour and composition of the vapor phase have been studied for I by thermal analysis and mass-spectrometry using a Knudsen cell. The mixed ligand complex I was found to sublime congruently in the temperature range 370–460 K: [La(hfa)3(Phen)2](s) = [La(hfa)3(Phen)](g) + Phen(g), ΔrH0(T) = 316.2 ± 1.8 kJ/mol.  相似文献   

7.
The present work refers to high-temperature drop calorimetric measurements on liquid Al–Cu, Al–Sn, and Al–Cu–Sn alloys. The binary systems have been investigated at 973 K, up to 40 at.% Cu in case of Al–Cu, and over the entire concentrational range in case of Al–Sn. Measurements in the ternary Al–Cu–Sn system were performed along the following cross-sections: xAl/xCu = 1:1, xAl/xSn = 1:1, xCu/xSn = 7:3, xCu/xSn = 1:1, and xCu/xSn = 3:7 at 1273 K. Experimental data were used to find ternary interaction parameters by applying the Redlich–Kister–Muggianu model for substitutional solutions, and a full set of parameters describing the concentration dependence of the enthalpy of mixing was derived. From these, the isoenthalpy curves were constructed for 1273 K. The ternary system shows an exothermic enthalpy minimum of approx. ?18,000 J/mol in the Al–Cu binary and a maximum of approx. 4000 J/mol in the Al–Sn binary system. The Al–Cu–Sn system is characterized by considerable repulsive ternary interactions as shown by the positive ternary interaction parameters.  相似文献   

8.
Fast analysis of thiocyanate by ion-pair chromatography using a silica-based monolithic column and direct conductivity detection was carried out. Chromatographic separation was performed on a Chromolith Speed ROD RP-18e using tetrabutylammonium hydroxide (TBA)-phthalic acid-acetonitrile as eluent. The effects of eluent concentration, eluent pH value, column temperature and flow rate on retention time of thiocyanate were investigated. The optimized chromatographic conditions for the determination of thiocyanate were as follows: 0.25 mmol/L TBA-0.18 mmol/L phthalate-7% acetonitrile (pH 5.5) as eluent, column temperature of 30 ℃, and flow rate of 6.0 mL/min. Retention time of thiocyanate was less than 1 min under the conditions. Common anions (Cl^-, NO3 , SO42 and I^- ) did not interfere with the determination of thiocyanate. Detection limit (S/N = 3) of thiocyanate was 0.96 mg/L. Calibration graph between peak area and the concentration of thiocyanate was linear in the range of 2.0- 100.0 mg/L. Relative standard deviation (RSD) of chromatographic peak area was 1.4% (n = 5). This method has been applied to the determination of thiocyanate in ionic liquids. Recoveries of thiocyanate after spiking were 100.5%.  相似文献   

9.
The lanthanide complexes derived from (3,5,13,15-tetramethyl 2,6,12,16,21-22-hexaazatricyclo[15.3.I1-17I7-11]cosa-1(21),2,5,7,9,11(22),12,15,17,19-decane) were synthesized. The complexes were found to have general composition [Ln(L)X2·H2O]X, where Ln = La3+, Ce3+, Nd3+, Sm3+ and Eu3+ and X = NO3? and Cl?. The ligand was characterized by elemental analyses, IR, Mass, and 1H NMR spectral studies. All the complexes were characterized by elemental analyses, molar conductance measurements, magnetic susceptibility measurements, IR, Mass, electronic spectral techniques and thermal studies. The ligand acts as a hexadentate and coordinates through four nitrogen atoms of azomethine groups and two nitrogen of pyridine ring. The lanthanum complexes are diamagnetic while the other Ln(III) complexes are paramagnetic. The spectral parameters i.e. nephelauxetic ratio (β), covalency factor (b1/2), Sinha parameter (δ%) and covalency angular overlap parameter (η) have been calculated from absorption spectra of Nd(III) and Sm(III) complexes. These parameters suggest the metal–ligand covalent bonding. In the present study, the complexes were found to have coordination number nine.  相似文献   

10.
《Polyhedron》2007,26(9-11):1811-1819
Seven kinds of polynuclear complexes of [Cu(hfac)2] (Hhfac = 1,1,1,5,5,5-hexafluoropentane-2,4-dione) with diazaaromatic rings have been prepared. The crystal structures of [{Cu(hfac)2(μ-L)}n] (L = 2,5- and 2,6-dimethylpyrazines, propylpyrazine (prpyz), quinoxaline, phenazine, 4,6-dimethylpyrimidine, and 1,6-naphthyridine) have been determined. These complexes consist of a one-dimensional chain structure, and the geometry around the copper ion is approximately an octahedral structure. The relations between the magnetic properties and coordination structure were discussed from the magnetic measurements. In the μ-prpyz complex, one nitrogen atom is coordinated to a copper ion at an axial position, and at the same time the other coordinated at an equatorial site of a neighboring copper ion. This complex showed antiferromagnetic interaction with J/kB = −0.086(3) K estimated from the Bonner–Fisher model. Weak magnetic interaction is caused by the somewhat long Cu–N distances due to the steric effect from the bridging ligands.  相似文献   

11.
In this paper, nine beads from excavations in the Valongo Wharf, located in the harbor area of Rio de Janeiro, Brazil that were utilized as ornaments by Africans and Afrodescendants during the 19th century were analyzed by Raman and X-Ray Fluorescence (XRF) spectroscopy. All samples in the analysis showed Raman spectra with two bands of maximum intensity around 1000 and 500 cm−1 related to the maximum stretching (νmax) and bending mode (δ), respectively, of the tetrahedral network of the SiO4 present in the glass matrix. However, there is variation in the intensity and position of the bands that are directly associated with the burning process and the raw material utilized in the manufacture of the beads. Based on the polymerization index (Ip = A500/A1000), it is possible to relate these two parameters. By establishing a correlation among the Ip and the νmax band, the beads were classified into groups. The results reveal that the beads’ base paste exhibits differences, allowing their classification into groups according to the manufacturing process. Based on the combination of the elemental characterization and Raman spectroscopy results, it was also possible to conclude that European and Asian countries are the possible origins of the beads.  相似文献   

12.
The properties of RuII complexes involving the imidazole moiety are discussed. Complexes [Ru(bpy)2(L)]2+ [bpy = 2,2′-bipyridine, L = 2-(2′-pyridyl)imidazole (2-pimH) and 4-(2′-pyridyl)imidazole (4-pimH)] have been synthesized and fully characterized. Reduction potentials are 0.76 V vs. Fc+/Fc0 for both complexes in acetonitrile solution, and the deprotonated complexes undergo irreversible electrochemical oxidation at 0.38 V vs. Fc+/Fc0. Density functional theory (DFT) calculations suggest that oxidation of the protonated complexes is primarily metal-based and that of the deprotonated complexes is ligand-centered. The pKa of the 4-pimH complex was found to be 9.7 ± 0.2; the pKa of the 2-pimH complex is 7.9 ± 0.2. Luminescence lifetimes (L = 4-pimH, 277 ns; 2-pimH, 224 ns; 4pim?, 40 ns; 2pim?, 34 ns in 5% methanol/water solution) combined with quantum yield data and acid–base behavior suggest that the non-coordinated imidazole nitrogen tunes deactivation pathways.  相似文献   

13.
Equilibrium studies on the ternary complex systems involving ampicillin (amp) as ligand (A) and imidazole containing ligands viz., imidazole (Him), benzimidazole (Hbim), histamine (Hist) and histidine (His) as ligands (B) at 37 °C and I = 0.15 mol dm?3 (NaClO4) show the presence of CuABH, CuAB and CuAB2. The proton in the CuABH species is attached to ligand A. In the ternary complexes the ligand, amp(A) binds the metal ion via amino nitrogen and carbonyl oxygen atom. The CuAB (B = Hist/His)/CuAB2 (B = Him/Hbim) species have also been isolated and the analytical data confirmed its formation. Non-electrolytic behavior and monomeric type of chelates have been assessed from their low conductance and magnetic susceptibility values. The electronic and vibrational spectral results were interpreted to find the mode of binding of ligands to metal and geometry of the complexes. This is also supported by the g tensor values calculated from ESR spectra. The thermal behaviour of complexes were studied by TGA/DTA. The redox behavior of the complexes has been studied by cyclic voltammetry. The antimicrobial activity and CT DNA cleavage study of the complexes show higher activity for ternary complexes.  相似文献   

14.
The synthesis and structure of Rh(I) and Pd(II) complexes of chiral P,C-chelating phosphino-(α-sulfinylalkyl)phosphonium ylide ligands with a trisubstituted asymmetric ylidic center P+–C1R(S1(O)p-Tol)–M (R = alkyl group) have been investigated, and compared to those of the analogous disubstituted ylide complexes (R = H). Reaction of the ethyl onium ylide of o-bis(diphenylphosphino)benzene with (?)-menthyl-(S)-p-tolylsulfinate afforded the corresponding racemic erythro phosphino-(α-sulfinylethyl)phosphonium in 90% de (R = Me). The racemization process is interpreted by a Berry-like pseudorotation mechanism driven by the steric repulsion between the α-methyl substituent and the bulky menthyloxy S-substituent or sulfur lone pair in the intermediate ylide-sulfinyl adduct. The ylide of phosphino-(α-sulfinylethyl)phosphonium reacts with [Rh(cod)2][PF6] and PdCl2(MeCN)2 to afford the corresponding P,C1-chelated threo-Rh(I) and erythro-Pd(II) mononuclear complexes in 70% yield and total diastereoselectivity. These respective complexes act as efficient catalytic precursors for the hydrogenation of (Z)-α-acetamidocinnamic acid and allylic substitution of 3-acetoxy-1,3-diphenyl-1-propene with sodium dimethyl malonate. The bonding features of the erythro-Pd(II) complex exhibiting a sulfinyl O?Pd interaction are studied theoretically at the DFT level using ELF and MESP analyses. The η2-P,C haptomeric form of the ylide ligand is estimated to compete at 19% with the η1-C haptomeric form dominating at 81%.  相似文献   

15.
The synthesis and characterisation of a series of neutral Au(I) N-heterocyclic carbene complexes [(NHC)AuX] (X = Cl and 2′,3′,4′,6′-tetra-O-acetyl-β-d-glucopyranosyl-1-thiolato) are reported. The chloro complexes were synthesised either by reaction of the appropriate 1,3-dialkylimidazol-2-ylidene with [(Me2S)AuCl] or by transmetallation between the appropriate Ag(I)–NHC complex and [(Me2S)AuCl]. The 2′,3′,4′,6′-tetra-O-acetyl-β-d-glucopyranosyl-1-thiolato complexes were prepared from the appropriate [(NHC)Au(I)Cl] complex and 2′,3′,4′,6′-tetra-O-acetyl-1-thio-β-d-glucopyranose under basic conditions. A cationic Au(I)–NHC triphenylphosphine adduct was also prepared. Structural studies (X-ray diffraction) of a number of the complexes show that in each case the gold atom is (quasi-) linearly two-coordinate, having C–Au–Cl, C–Au–S or C–Au–P coordination. In one case, a new phase of [(Cy2Im)AuCl], the molecules pack pair-wise with a close Au⋯Au interaction (3.1566(6) Å). Preliminary studies show this complex is luminescent in the solid state.  相似文献   

16.
Spectroscopic studies revealed that the interaction of cimetidine drug with electron acceptors iodine and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) resulted through the initial formation of ionic intermediate to charge transfer (CT) complex. The CT-complexes of the interactions have been characterized using UV–vis, 1H NMR, FT-IR and GC–MS techniques. The formation of triiodide ion, I3?, is further confirmed by the observation of the characteristic bands in the far IR spectrum for non-linear I3? ion with Cs symmetry at 156 and 131 cm?1 assigned to νas(I–I) and νs(I–I) of the I–I bond and at 73 cm?1 due to bending δ(I3?). The rate of formation of the CT-complexes has been measured and discussed as a function of relative permittivity of solvent and temperature. The influence of relative permittivity of the medium on the rate indicated that the intermediate is more polar than the reactants and this observation was further supported by spectral studies. Based on the spectroscopic results plausible mechanisms for the interaction of the drug with the chosen acceptors were proposed and discussed and the point of attachment of the multifunctional cimetidine drug with these acceptors during the formation of CT-complex has been established.  相似文献   

17.
《Comptes Rendus Chimie》2015,18(7):766-775
A series of mononuclear Cu(I)–halide complexes, [CuX(PPh3)2(L)] (X = Cl, Br, I; PPh3 = triphenylphosphine; L = pyridine (py), isoquinoline (iq), 1,6-naphthyridine (nap)), were synthesized. The emission color of [CuX(PPh3)2(L)] varies from blue to red by changing the L ligands and the halide ions, and all the complexes exhibit high emission quantum yields (0.16–0.99) in the crystals. The emission studies revealed that the emissive states of [CuX(PPh3)2(L)] differ depending on the L ligand. Complexes [CuX(PPh3)2(py)] and [CuX(PPh3)2(nap)] mainly emit from the singlet metal-to-ligand charge transfer mixed with the halide-to-ligand charge transfer (1(M + X)LCT) state at room temperature. In contrast, emissions from [CuX(PPh3)2(iq)] at room temperature originate from both 3(M + X)LCT and 3ππ* states. These results indicate that N-heteroaromatic ligands play an important role in the emission properties of mononuclear Cu(I)–halide complexes.  相似文献   

18.
Some mixed-ligand thorium(IV) complexes with the general formula [Th(OOCCH3)4?nLn] (L = anions of myristic, palmitic or stearic acid and n = 1–4) have been synthesized by the stepwise substitution of acetate ions of thorium(IV) acetate with straight chain carboxylic acids in toluene under reflux. The complexes were characterized by elemental analyses, spectral (electronic, infrared, NMR and powder XRD) studies, electrical conductance and magnetic susceptibility measurements. Doubly and triply bridged coordination modes of the ligands were established by their infrared spectra and nano-size of the complexes by powder XRD. Room temperature magnetic susceptibility measurements revealed diamagnetic nature of the complexes. Electronic absorption spectra of the complexes showed π  π*, n  π* and charge transfer transitions. Molar conductance values indicated the complex to be non-electrolytes. These are a new type of mixed-ligand thorium(IV) complexes for which a nano-sized, oxygen bridged polymeric structure has been established on the basis of physico-chemical studies.  相似文献   

19.
Precursor glass of composition 25K2O–25Nb2O5–50SiO2 (mol%) doped with Er2O3 (0.5 wt% in excess) was isothermally crystallized at 800 °C for 0–100 h to obtain transparent KNbO3 nanostructured glass–ceramics. XRD, FESEM, TEM, FTIRRS, dielectric constant, refractive index, absorption and fluorescence measurements were carried out to analyze the morphology, dielectric, structure and optical properties of the glass–ceramics. The crystallite size of KNbO3 estimated from XRD and TEM is found to vary in the range 7–23 nm. A steep rise in the dielectric constant of glass–ceramics with heat-treatment time reveals the formation of ferroelectric nanocrystalline KNbO3 phase. The measured visible photoluminescence spectra have exhibited green emission transitions of 2H11/2, 4S3/2  4I15/2 upon excitation at 377 nm (4I15/2  4G11/2) absorption band of Er3+ ions. The near infrared (NIR) emission transition 4I13/2  4I15/2 is detected around 1550 nm on excitation at 980 nm (4I15/2  4I11/2) of absorption bands of Er3+ ions. It is observed that photoluminescent intensity at 526 nm (2H11/2  4I15/2), 550 nm (4S3/2  4I15/2) and 1550 nm (4I13/2  4I15/2) initially decrease and then gradually increase with increase in heat-treatment time. The measured lifetime (τf) of the 4I13/2  4I15/2 transition also possesses a similar trend. The measured absorption and fluorescence spectra reveal that the Er3+ ions gradually enter into the KNbO3 nanocrystals.  相似文献   

20.
In this work, a new biosensor was prepared through immobilization of bovine liver catalase in a photoreticulated poly (vinyl alcohol) membrane at the surface of a conductometric transducer. This biosensor was used to study the kinetics of catalase–H202 reaction and its inhibition by cyanide. Immobilized catalase exhibited a Michaelis–Menten behaviour at low H202 concentrations (< 100 mM) with apparent constant KMapp = 84 ± 3 mM and maximal initial velocity VMapp = 13.4 μS min? 1. Inhibition by cyanide was found to be non-competitive and inhibition binding constant Ki was 13.9 ± 0.3 μM. The decrease of the biosensor response by increasing cyanide concentration was linear up to 50 μM, with a cyanide detection limit of 6 μM. In parallel, electrochemical characteristics of the catalase/PVA biomembrane and its interaction with cyanide were studied by cyclic voltammetry and impedance spectroscopy. Addition of the biomembrane onto the gold electrodes induced a significant increase of the interfacial polarization resistance RP. On the contrary, cyanide binding resulted in a decrease of Rp proportional to KCN concentration in the 4 to 50 μM range. Inhibition coefficient I50 calculated by this powerful label-free and substrate-free technique (24.3 μM) was in good agreement with that determined from the substrate-dependent conductometric biosensor (24.9 μM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号