首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
随着工业技术的飞速发展,大量有机污染物被应用于生活的各个领域,由此带来了严重的环境问题。众所周知,半导体光催化技术是一种有效且环境友好的降解去除典型污染物的方法,而光催化剂在该技术的应用中起着关键作用。因此,在光催化污染物降解领域,人们已经尝试研究了各种半导体材料。其中石墨相氮化碳(g-C3N4)是近年来公认的“明星”材料之一。因其独特的二维层状结构和良好的可见光响应而引起了人们的极大兴趣。由于带隙较窄(~2.7 eV)、能带结构可调以及良好的物理化学稳定性,g-C3N4对太阳光谱的吸收可达450 nm,具有一定的可见光光催化性能。然而,g-C3N4在去除抗生素和染料方面的降解效率仍然存在不足,例如光生电荷的快速复合以及空穴的氧化能力弱等。为了优化这种有前景的光催化材料,人们尝试了多种方法来改善g-C3N4的电子能带结构,例如金属/非金属元素掺杂、形貌调控和官能团修饰等。最近,人们提出了由两种N型半导体光催化剂组成的梯形异质结理念,它可以利用半导体材料更正的价带和更负的导带。相关结果表明,构筑梯形异质结是提高g-C3N4光催化活性的最有效方法之一。因此,本文通过简单的原位溶剂热生长法制备了新型0D/2D Bi4V2O11/g-C3N4梯形异质结光催化剂。Bi4V2O11/g-C3N4复合材料对去除土霉素(OTC)和活性红染料展示出了优异的光催化活性。尤其是BVCN-50复合材料对OTC和活性红的降解效率高达74.1%和84.2%,该过程的主要活性物种为·O2-。大幅增强的光催化性能归因于Bi4V2O11和g-C3N4之间形成的梯形异质结保持了光催化体系的强氧化还原能力(Bi4V2O11的强氧化能力和g-C3N4的强还原能力),并促进了光生电荷的空间分离。此外,金属Bi0的表面等离子共振效应可以拓宽异质结系统的光吸收范围。此外,基于高效液相色谱-质谱联用(LC-MS)分析,我们研究了OTC降解过程中可能的中间体和降解路径。这项工作为设计和制备g-C3N4基梯形异质结用于抗生素和活性染料降解提供了一种新的策略。  相似文献   

2.
为提高石墨相氮化碳(g-C3N4)对可见光的利用率及光催化效率,采用热聚合与直接负载等方法,将g-C3N4负载于蒙脱石表面,制备了g-C3N4/蒙脱石复合光催化材料,其结构经SEM, FT-IR及XRD表征。以罗丹明B(RhB)为目标污染物,研究了不同负载量g-C3N4/蒙脱石复合光催化剂的可见光催化性能。并分别以对苯醌、碘化钾和异丙醇为自由基捕获剂,研究了复合材料的光催化机理。结果表明:当g-C3N4的质量分数为83%(CN/M-83%)时,RhB经可见光照射1 h后,降解率达到99.2%。光催化速率常数为纯g-C3N4光催化速率常数的3.2倍。  相似文献   

3.
半导体光催化技术不仅可以将太阳能转化为化学能,还可以直接降解和矿化有机污染物,因此其在抑制环境污染和解决能源短缺方面具有广阔的应用前景。类石墨相氮化碳(g-C3N4)具有独特的电子能带结构、优异的热稳定性以及化学稳定性,因此g-C3N4作为一种廉价的无金属光催化剂被广泛应用于光解水制氢产氧、污染物降解、光催化CO2还原、抗菌和有机官能团选择性转换等领域。然而,传统热缩聚法合成的g-C3N4光催化剂比表面积小、禁带宽度大、光生电子-空穴易于复合、光生载流子传输慢,抑制了其光催化活性。为了进一步提高g-C3N4的光催化活性,出现了多种改性方法。本文针对g-C3N4光催化剂的改性研究,综述了近年来国内外在g-C3N4光催化剂改性方面的重要研究进展,如采用模板法优化g-C3N4的纳米结构、元素掺杂及共聚合调控g-C3N4的能带结构、贵金属沉积或半导体复合提高光生载流子分离效率等。最后,本文还展望了g-C3N4光催化剂在改性方面的未来发展趋势。  相似文献   

4.
利用半导体光催化技术将太阳能转化为化学能或直接降解和矿化有机污染物,是解决能源短缺和环境污染等问题的有效途径。聚合物类石墨相氮化碳(g-C3N4)具有类似石墨烯的结构,由于其优异的化学稳定性和独特的电子能带结构,可作为太阳能转化、环境污染物降解的催化剂而得到了广泛关注。g-C3N4制备原料便宜易得、制备方法简单,可作为廉价、稳定、不含金属的可见光光催化剂应用于光催化降解污染物、水分解制氢制氧及有机合成领域。然而光生电荷易复合,使得g-C3N4的催化活性还不能满足大规模应用的需求。本文针对g-C3N4光催化活性的提高,综述了国内外在g-C3N4复合改性方面的重要研究进展,如金属/非金属掺杂、半导体复合、表面金属沉积等,并讨论了复合物的催化机理。  相似文献   

5.
氮化碳聚合物半导体光催化   总被引:1,自引:0,他引:1  
半导体光催化技术通过太阳光驱动一系列重要的化学反应,将低密度的太阳能转化为高密度的化学能或直接降解和矿化有机污染物,在解决能源短缺和环境污染等问题方面具有重要的应用前景。最近,聚合物半导体石墨相氮化碳(g-C3N4),由于优异的化学稳定性和独特的电子能带结构,被作为一种廉价、稳定、不含金属组分的可见光光催化剂广泛应用于太阳能的光催化转化,如光解水产氢产氧、有机选择性光合成和有机污染物的降解等,引起人们的关注。本文将围绕g-C3N4光催化剂的改性研究,综述国内外近年来在g-C3N4光催化领域所取得一些重要进展,比如理论研究g-C3N4的组成结构及化学性质、金属/非金属掺杂调控g-C3N4的半导体能带结构、软/硬模板法优化g-C3N4的纳米结构、表面化学修饰改进g-C3N4的表面反应动力学过程及半导体复合提高光生载流子的分离效率等。最后,本文还对g-C3N4光催化的未来发展趋势进行展望。  相似文献   

6.
光催化氧化是一种应用前景良好的环境治理技术.与絮凝、物理吸附和化学氧化等常见的方法相比,光催化氧化具有环境友好、氧化完全、方便和廉价等优势.特别是可见光光催化氧化,可利用太阳能中占比最高的可见光,在应用中更具优势.因而,探索可见光响应性能优异的光催化剂一直是光催化氧化领域的一个重要研究内容.硒化铋(Bi2Se3)是一种带隙(带隙宽度在0.3~1.3 e V)非常窄的半导体,能吸收全部波长范围的可见光和近红外光.此外,Bi2Se3还具有独特的金属表面态,其表面具有良好的导电性.这些特性使其在可见光光催化氧化领域具有很大的应用潜力.然而,由于Bi2Se3价带位置高,氧化能力很弱,其价带上的空穴在光催化反应中难以被消耗,导致空穴大量累积,并迅速与光生电子复合,大幅降低了Bi2Se3的光催化性能.因此,一直以来,Bi2Se3很少被用于光催化反应.如何充分利用Bi2Se3的光响应优势,制备出性能优异的光催化剂,仍是具有挑战性和吸引力的研究方向.本文采用预先制备的Bi2O3/g-C3N4复合物作为前驱体,通过原位转化的方法,将前驱体置于热的Se蒸汽中,使前驱体上的Bi2O3与Se蒸汽反应,完全转化为Bi2Se3纳米颗粒,从而制得Bi2Se3/g-C3N4复合光催化剂(Bi2Se3含量约为4 wt%).透射电镜结果表明,所形成的Bi2Se3纳米颗粒较均匀地分布在g-C3N4表面.表面功函数分析发现,Bi2Se3与g-C3N4结合后,它们的费米能级分别由原来的-0.55和-0.18 e V变为平衡时的-0.22 e V,可形成指向g-C3N4的内建电场,有利于形成梯型(S型)异质结.在此基础上,能级位移、荧光分析、结构计算和反应自由基测试等结果表明,Bi2Se3和g-C3N4之间形成了S型异质结.在可见光光催化降解苯酚的实验中,所制备的Bi2Se3/g-C3N4复合物的光催化活性明显优于单一的Bi2Se3和g-C3N4.结合比表面、孔结构、光吸收和荧光等对比分析,认为Bi2Se3/g-C3N4的这种S型异质结构在其光催化活性增强中起到了关键作用.在光照条件下,其g-C3N4导带中光生电子向Bi2Se3的价带迁移,并与光生空穴复合,从而使Bi2Se3导带上可保留更多的高活性光生电子参与光催化反应,由此Bi2Se3/g-C3N4的光催化活性增强.循环性能测试和光还原实验结果表明,所制备的Bi2Se3/g-C3N4复合光催化剂具有良好的稳定性.本文工作为高可见光吸收的光催化剂制备和性能增强提供了新途径和新视野.  相似文献   

7.
随着全球环境问题日益严重以及能源需求的不断增长,人们对高效环境修复与能源转换技术的需求日益增强.以半导体材料为光催化剂,可将可再生的太阳能转化为化学能,有望成为解决人类面临的能源和环境问题的有效途径.其中,开发高效稳定的光催化剂是该技术得以实际应用的关键.近几十年,研究人员开发出多种半导体材料并应用于光催化研究.其中,具有可见光响应的有机非金属光催化剂石墨相氮化碳(g-C3N4)因其稳定的分子结构,较小的禁带宽度(~2.7 e V)以及合适的能带结构而备受关注.然而,与大多数半导体光催化剂相似,由于传统g-C3N4上的光生电子和空穴极易复合,表面催化活性位点较少,可见光响应范围较窄,使得其催化效率不高.基于g-C3N4独特的有机分子结构,通过引入功能化的特定基团以优化g-C3N4的电子能带结构,促进载流子传输,拓展可见光响应范围,是提高其光催化效率的有效途径.已有研究表明,在各种功能化官能团中,具有强电负性的含氧基团对g-C3N4的Melon单元优化是非常有效的.因此,本文通过g-C3N4与氨基磺酸间的简单固相热反应成功合成了磺酸基功能化的g-C3N4纳米片(SACN),并实现了同步增强的相互作用.根据固体强酸特性,氨基磺酸可以在热处理的辅助下对g-C3N4进行酸刻蚀,从而增加其比表面积以及表面催化活性位点.更重要的是,理论计算与实验表征结果表明,磺酸基团的吸电子诱导效应所产生的电荷驱动力可极大改善g-C3N4的电荷转移动力学,有效抑制了它们的再结合.此外,吸电子诱导效应还可促进g-C3N4的局域电子再分布,进而降低g-C3N4的导带电位,增强光诱导电子的还原能力.光催化性能测试结果表明,SACN-400样品(前驱体中氨基磺酸加入量为400 mg)在光催化分解水制备氢气以及光降解传统污染物领域展现出较好的性能,其在入射光波长为420±15 nm时的产氢表观量子效率为11.03%.综上,本文为设计合成具有较高产氢性能以及污染物降解效率的石墨相氮化碳基光催化剂提供了一种简便有效的策略.  相似文献   

8.
黄艳  傅敏  贺涛 《物理化学学报》2015,31(6):1145-1152
用简单的超声分散法合成了具有可见光响应的类石墨氮化碳(g-C3N4)/BiVO4复合光催化剂. 采用X射线衍射(XRD), X射线光电子能谱(XPS), 扫描电子显微镜(SEM), 透射电子显微镜(TEM), 紫外-可见(UV-Vis)分光光谱, 傅里叶红外变换(FTIR)光谱, 荧光发射谱(PL)和光电流响应等技术对所制备催化剂进行相关表征. 通过可见光下(λ> 420 nm)光催化还原CO2的性能来评价样品的光催化活性, 发现不同复合比的催化剂中, 含40% (w) g-C3N4的复合催化剂表现出最高的光催化活性, 其催化活性分别为纯g-C3N4纳米片和纯BiVO4的催化活性的2倍和4倍.光催化活性增加的主要原因是g-C3N4和BiVO4之间形成了异质结, 且相互间能级匹配, 有利于光生电子和空穴的分离.  相似文献   

9.
郄佳  李明  刘利  梁英华  崔文权 《化学进展》2016,28(10):1569-1577
能源短缺和环境恶化是人类社会快速发展面临的重大难题。太阳能作为一种清洁无污染的理想新型能源,具有取之不尽、用之不竭的特点,是实现可持续发展的最佳能源选择。半导体光催化可以直接利用太阳光进行催化反应,得到了广泛关注。作为一种低成本无金属光催化剂,g-C3N4具有独特的电子能带结构、优良的化学稳定性和热力学稳定性,在光催化领域如分解水制氢制氧、降解有机污染物、CO2还原、抗菌和有机官能团选择性转换等方面表现出巨大的应用前景。目前g-C3N4光催化剂存在着如比表面积小、可见光利用率低、量子产率低和光生载流子易复合等问题,制约了其在光催化领域的应用。因此,提升g-C3N4光催化性能是光催化研究领域的重要课题。第一性原理具有半经验方法不可比拟的优势,已成为光催化研究领域计算和模拟的重要基础。基于密度泛函理论的第一性原理在光催化领域的广泛应用,为有效迅速地探求能够改善g-C3N4光催化性能的方法提供了明确的研究手段。本文从理论计算的角度综述了近年来在g-C3N4改性方面所取得的一些重要研究进展,主要包括元素掺杂、复合和形貌调控等改性手段。本文以g-C3N4改性光催化剂为研究对象,从电子性质、能带结构、光学性质和缺陷形成能的角度阐述了各种改性手段提高光催化活性的微观机理。最后,在总结前文所述各类改性研究的基础上,对g-C3N4改性光催化剂未来的发展趋势作出了展望。  相似文献   

10.
本文通过在双氰胺前驱体中添加聚乙二醇,在缩聚过程实现碳掺杂形成含氮空位的g-C3N4光催化剂。通过X射线衍射(XRD)、红外光谱(FTIR)、光电子能谱(XPS)、紫外-可见吸收光谱(UV-Vis)和荧光谱(FL)等表征手段,考察了原位聚合碳掺杂形成氮空位对g-C3N4物相结构、组分与化学态、光吸收性能及光催化活性的影响。研究结果表明,采用该方法可实现原位聚合碳掺杂,有效拓展g-C3N4的可见光吸收至850 nm,在紫外-可见光与可见光照射下光降解RhB及光催化产氢性能均显著提高,尤其可见光条件下的性能提升更为显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号