首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
利用单壁碳纳米管(SWCNTs)能量色散关系, 计算了最低导带的电子速度和有效质量, 重点讨论了SWCNTs中最低导带电子速度和有效质量与波矢及管径大小的关系. 结果表明, 半导体型锯齿SWCNTs的电子速度和有效质量与其结构参量(管径)有直接的关系. 各种椅型SWCNTs(金属型)和金属型锯齿SWCNTs最低导带电子速度和有效质量随波矢的变化规律分别相同, 各种半导体型锯齿SWCNTs最低导带电子速度和有效质量随波矢的变化规律则有明显差别. 这意味着在低偏压下, 不同管径的椅型SWCNTs和金属型锯齿SWCNTs输运性能相同, 而各种不同管径半导体型锯齿SWCNTs输运性能有明显差别.  相似文献   

2.
选用牛磺脱氧胆酸钠和脱氧胆酸钠等6种胆酸类表面活性剂,考察其对单壁碳纳米管(SWCNTs)的分散能力.紫外-可见-近红外吸收光谱测试结果表明,在超声功率为225 W,超声时间1 h的分散条件下,胆酸类表面活性剂均能对SWCNTs均匀分散,均可作为SWCNTs的分散剂.在相同条件下,质量分数为2%的牛磺脱氧胆酸钠对SWCNTs的分散能力最强,脱氧胆酸钠对SWCNTs的分散能力最弱.此外,还采用聚乙二醇/葡聚糖双水相系统对SWCNTs分散液进行了萃取分离,获得了纯度较高的手性SWCNTs(6,5).所筛选的SWCNTs分散剂及采用的双水相分离方法为单一手性SWCNTs的分离提供了一定的技术参考.  相似文献   

3.
以纳米硫化镉薄膜修饰的铟锡氧化物电极(Cd S/ITO)作光阳极,铜(Ⅱ)配合物[Cu(phen)(L-Trp)·(H_2O)]~+(phen=1,10-菲啰啉,L-Trp=L-色氨酸)修饰单壁碳纳米管(SWCNTs)电极作阴极,构建了光催化尿酸(UA)燃料电池,并研究了其性能及热处理温度的影响.结果表明,在40℃以下获得的纳米Cd S修饰电极在320~550 nm波长区间显现明显的吸收和光伏响应,在可见光辐射下能光催化氧化UA;较高温度的热处理(200~300℃)却降低了纳米Cd S对UA的光催化氧化活性.[Cu(phen)(L-Trp)(H_2O)]~+/SWCNTs电极在-0.131 V电位下呈现一对准可逆的氧化还原峰,并能电催化还原O_2和H_2O_2.此外,基于UA在Cd S/ITO电极上的光催化氧化及O_2在[Cu(phen)(L-Trp)(H_2O)]~+/SWCNTs电极上的电催化还原,组装了UA(0.2mmol/L)燃料电池,其在可见光照射(0.18 m W/cm~2)下产生0.52 V开路电压,13.08μA/cm~2短路光电流,在0.41 V下呈现的最大功率密度为4.10μW/cm~2.  相似文献   

4.
利用凝胶柱色谱技术, 研究者们通过两步或多步淋洗的方法实现了不同导电属性或电子结构单壁碳纳米管(SWCNTs)的分离, 并提出其分离机制主要是由不同导电属性和电子结构的SWCNTs 与凝胶填料之间作用力的差异所导致的. 基于凝胶柱色谱分离技术, 本文重点考察了超声时间对单壁碳纳米管单分散以及金属型/半导体型SWCNTs 分离的影响. 在一定的低超声功率下, 适当增加超声时间有利于SWCNTs 在十二烷基硫酸钠(SDS)溶液中的单分散. 紫外-可见-近红外(UV-Vis-NIR)吸收光谱、拉曼(Raman)光谱和荧光(PL)光谱表征结果表明, 2 h的超声条件是获得高纯度的金属型以及不同直径分布的半导体型SWCNTs 的最优条件. 我们认为不同超声时间对SWCNTs 分离的影响主要是改变了SWCNTs 的单分散性和长度, 调制了不同SWCNTs 与凝胶之间作用力的差异, 从而导致了不同SWCNTs分离结果.  相似文献   

5.
应用循环伏安法和微分脉冲伏安法研究了[Ru(bpy)2tatp]3+/2+(bpy=2,2′-联吡啶, tatp=1,4,8,9-四氮三联苯)在ITO表面上的电化学组装及双十六烷基磷酸盐(DHP)和单壁碳纳米管(SWCNTs)对其组装效果的影响. 研究结果表明, [Ru(bpy)2tatp]2+在ITO电极上1.057 V(vs. Ag/AgCl)电位下呈现出清晰的扩散控制峰. 随着连续伏安扫描次数的增多, 微分脉冲伏安图逐渐呈现出明显的吸附控制峰. 当DHP浓度在0.05~0.22 mmol/L区间内时, 不管有无SWCNTs存在, DHP均能增强[Ru(bpy)2tatp]2+在缓冲溶液中的扩散系数和促进其在ITO上的电化学组装, 而SWCNTs在其中起减弱作用. 讨论了DHP和SWCNTs参与的[Ru(bpy)2tatp]3+/2+在ITO上的电化学组装机理.  相似文献   

6.
基于凝胶柱色谱分离技术研究了单分散的单壁碳纳米管(SWCNTs)在不同化学结构多孔多糖凝胶中的流动特性以及对金属型(m-)/半导体型(s-)SWCNTs分离的影响.通过比较SWCNTs在一系列不同孔径的葡聚糖Sephacryl凝胶中的流动行为,发现减小孔径尺寸能够增强s-SWCNTs与凝胶之间的吸附作用力,使大直径的m-SWCNTs快速地流过凝胶颗粒,而选择性地保留了小直径的s-SWCNTs.进一步发现多糖凝胶化学结构比孔径尺寸在SWCNTs的m/s分离中起着更重要的作用.当基于葡聚糖结构的Sephacryl凝胶中的氨基结构被琼脂糖结构所取代时,如Superdex 200和Sepharose 2B凝胶会增强它们与SWCNTs之间的作用力,使SWCNTs的保留时间延长,降低了s-SWCNTs的选择性和纯度.此外,即使拥有与Sephacryl S100类似的孔径范围,当Sephacryl凝胶中的氨基被疏水环氧丙烷基团取代时,葡聚糖凝胶Sephadex G100与SWCNTs的作用力很弱,导致所有SWCNTs快速流动,无法实现SWCNTs的m/s分离.因而,我们认为凝胶孔径和化学结构共同影响并调控了SWCNTs的m/s分离的选择性、纯度以及分离效率.  相似文献   

7.
基于凝胶柱色谱分离技术研究了单分散的单壁碳纳米管(SWCNTs)在不同化学结构多孔多糖凝胶中的流动特性以及对金属型(m-)/半导体型(s-)SWCNTs 分离的影响. 通过比较SWCNTs 在一系列不同孔径的葡聚糖Sephacryl 凝胶中的流动行为,发现减小孔径尺寸能够增强s-SWCNTs 与凝胶之间的吸附作用力,使大直径的m-SWCNTs 快速地流过凝胶颗粒,而选择性地保留了小直径的s-SWCNTs. 进一步发现多糖凝胶化学结构比孔径尺寸在SWCNTs 的m/s 分离中起着更重要的作用. 当基于葡聚糖结构的Sephacryl 凝胶中的氨基结构被琼脂糖结构所取代时,如Superdex 200 和Sepharose 2B凝胶会增强它们与SWCNTs 之间的作用力,使SWCNTs 的保留时间延长,降低了s-SWCNTs 的选择性和纯度. 此外,即使拥有与Sephacryl S100类似的孔径范围,当Sephacryl 凝胶中的氨基被疏水环氧丙烷基团取代时,葡聚糖凝胶Sephadex G100 与SWCNTs 的作用力很弱,导致所有SWCNTs 快速流动,无法实现SWCNTs 的m/s 分离. 因而,我们认为凝胶孔径和化学结构共同影响并调控了SWCNTs的m/s分离的选择性、纯度以及分离效率.  相似文献   

8.
水对氩气中催化法分解甲烷制备单壁碳纳米管的影响   总被引:2,自引:0,他引:2  
用"柠檬酸法"制备W-Fe-MgO和Mo-Fe-MgO催化剂,以Ar为载气,在1273 K催化分解CH4制单壁碳纳米管(SWCNTs),发现原料气中加水和不加水对产物的影响极大.不加水时,产物中SWCNTs含量极低,以无定形碳和多壁碳纳米管(MWCNTs)为主;加少量水时,产物绝大部分是直径在1~3 nm左右SWCNTs形成的管束.在1273 K下,H2O分压在0.67~2.0 kPa时得到SWCNTs含量较高的产物,100 mg催化剂上的碳产量为40~52 mg.进一步增加原料气中的水分压到2.7 kPa,则无碳产物生成.通过对比实验、粗产物XRD分析和对反应尾气质谱检测,可得如下结论:在Mo-Fe-MgO和W-Fe-MgO催化剂中的金属氧化物和碳化物是CH4分解为无定形碳的活性相,Fe-Mo合金相是CH4分解得SWCNTs的主要活性相.当反应气中无水时,CH4在催化剂中的氧化物和碳化物上生成的无定形碳起决定作用,而Fe-Mo合金上生成SWCNTs的反应相对减少,使产物中SWCNTs含量很低;反应气中有少量水时,水抑制了催化剂中氧化物和碳化物上无定形碳的生成,使CH4在Fe-Mo合金上分解生成SWCNTs成为主反应,此时产物中SWCNTs含量较高;水量过大时,催化剂中氧化物不能被还原为金属,故无SWCNTs生成,而此时水也抑制了无定形碳的生成,因而无任何碳产物生成.  相似文献   

9.
刘霁欣  任钊  谢有畅 《催化学报》2004,25(7):561-570
 采用“柠檬酸法”制备的W-Fe-MgO催化剂,在小型流化床反应器中分别以Ar和H2为载气在1073~1373 K下催化甲烷分解制单壁碳纳米管(SWCNTs). 实验结果表明,用H2作载气制备SWCNTs的最佳温度为1373 K,在Fe∶Mg摩尔比≤10∶100时,催化剂上的碳产率随其W载量的增加而显著增大,产物中的SWCNTs含量也保持在较高水平,最高碳产率可达55%(相对于催化剂的质量分数). 而使用Ar载气时最佳反应温度为1073 K, 用W∶Mg摩尔比为1∶100的催化剂可制得SWCNTs含量较高的产物,而W∶Mg摩尔比超过1∶100的催化剂上产物中的SWCNTs含量显著下降. 根据XRD和XPS实验结果推测了W-Fe-MgO催化剂上生长SWCNTs的活性相.  相似文献   

10.
采用电泳沉积法, 在FTO/介孔TiO2薄膜上制备了介孔TiO2/单壁碳纳米管(SWCNTs)薄膜电极, 用Raman和SEM等手段对薄膜电极进行了表征. 结果表明, SWCNTs已沉积到介孔TiO2薄膜上. 分别用四羧基苯基卟啉(TCPP)和联吡啶钌化合物N719对其进行敏化, 并组装成太阳能电池. 研究结果表明, 与单纯的TiO2粒子膜相比, 介孔TiO2和SWCNTs的紧密结合可使得光生电子更容易传输, 光电转换效率显著提高.  相似文献   

11.
应用密度泛函理论研究了纯(8, 0)单壁碳纳米管(SWCNT)和B原子、N原子以及BN原子对掺杂的(8, 0) SWCNTs对硫化氢气体分子的传感性质. 计算结果表明, 与纯碳纳米管相比, B原子掺杂的SWCNT显示了对H2S分子的敏感性, 其几何结构和电子性质在吸附H2S分子后发生了显著变化; 而N原子和BN原子对的掺杂没有改善SWCNT对H2S分子的吸附性能, 因此我们建议B原子掺杂的SWCNT作为检测H2S分子的新型气相传感器.  相似文献   

12.
We have investigated atomic and electronic structures of hydrogen-chemisorbed single-walled carbon nanotubes (SWCNTs) by density functional calculations. We have searched for relative stability of various hydrogen adsorption geometries with coverage. The hydrogenated SWCNTs are stable with coverage of H/C, theta >/= 0.3. The circular cross sections of nanotubes are transformed to polygonal shapes with different symmetries upon hydrogen adsorption. We find that the band gap in carbon nanotubes can be engineered by varying hydrogen coverage, independent of the metallicity of carbon nanotubes. This is explained by the degree of sp(3) hybridization.  相似文献   

13.
Interaction energies and entropies associated with hydrogen adsorption on the inner and outer surfaces of zigzag single-wall carbon nanotubes (SWCNT) of various diameters are analyzed by means of molecular mechanics, density functional theory, and ab initio calculations. For a single molecule the strongest interaction, which is 3.5 greater than that with the planar graphite sheet, is found inside a (8,0) nanotube. Adsorption on the outer surfaces is weaker than that on graphite. Due to the steric considerations, both processes are accompanied by an extremely strong decline in entropy. Absence of specific adsorption sites and weak attractive interaction between hydrogen molecules within carbon nanotubes results in their close packing at low temperatures. Using the calculated geometric and thermodynamic parameters in Langmuir isotherms we predict the adsorption capacity of SWCNTs at room temperature to be smaller than 1 wt % even at 100 bar.  相似文献   

14.
Single wall carbon nanotubes (SWCNTs) often aggregate into bundles of hundreds of weakly interacting tubes. Their cross-polymerization opens new possibilities for the creation of new super-hard materials. New mechanical and electronic properties are expected from these condensed structures, as well as novel potential applications. Previous theoretical results presented geometric modifications involving changes in the radial section of the compressed tubes as the explanation to the experimental measurements of structural changes during tube compression. We report here results from molecular dynamics simulations of the SWCNTs polymerization for small diameter arm chair tubes under compression. Hydrostatic and piston-type compression of SWCNTs have been simulated for different temperatures and rates of compression. Our results indicate that large diameter tubes (10,10) are unlike to polymerize while small diameter ones (around 5 A) polymerize even at room temperature. Other interesting results are the observation of the appearance of spontaneous scroll-like structures and also the so-called tubulane motifs, which were predicted in the literature more than a decade ago.  相似文献   

15.
The adsorption of H(2) on Ce doped single-walled carbon nanotubes (SWCNT) and graphene are investigated by using density functional theory. For both systems, it is found that Ce preferentially occupies the hollow site on the outside. The results indicate that Ce/SWCNT system is a good candidate for hydrogen storage where six H(2) per Ce can be adsorbed and 5.14 wt% H(2) can be stored in the Ce(3)/SWCNT system. Among metal-doped SWCNTs, Ce exhibits the most favorable hydrogen adsorption characteristics in terms of the adsorption energy and the uptake capacity. The hybridization of the Ce-4f and Ce-5d orbitals with the H orbital contributes to the H(2) binding where Ce-4f electrons participate in the hybridization due to the instability of the 4f state. The interaction between H(2) and Ce/SWCNT is balanced by the electronic hybridization and electrostatic interactions. Curvature of SWCNT changes the size of the binding energy of Ce and C and the adsorption energy of H(2) on Ce.  相似文献   

16.
First-principles calculations based on density functional theory (DFT) method are used to investigate the adsorption properties of nerve agent DMMP on typical zigzag (semiconducting) and armchair (metallic) single wall carbon nanotubes (SWCNTs). The adsorption energies for DMMP molecule on different adsorption sites on SWCNTs are obtained. The results indicate that DMMP is weakly bound to the outer surface of both the considered SWCNTs and the obtained adsorption energy values and binding distances are typical for the physisorption. We find that DMMP adsorptive capability of metallic CNTs is about twofold that of semiconducting one. The adsorption of DMMP on the higher chiral angle nanotubes was also investigated and the results indicate that nanotube’s chirality increases the adsorption capability of the tube but however the adsorption characteristic is typical for the physisorption. Furthermore, co-adsorption of two DMMP molecules on the SWCNTs as a single-layer/bi-layer of adsorbed molecules as well as the adsorption of one DMMP molecule on the CNT bundles consisting of three SWCNTs has also been examined. The obtained results reveal that for both the considered systems the binding energy was increased for the DMMP adsorption but it’s still typical for the physisorption, consistent with the recent experimental result. The study of the electronic structures and charge analysis indicate that no significant hybridization between the respective orbital takes place and the small interaction obtained quantitatively in terms of binding energies.  相似文献   

17.
The scaling behavior of band gaps and fundamental quantities of exciton, i.e., reduced mass, size, and binding strength, in three families of quasi one-dimensional graphene nanoribbons with hydrogen passivated armchair shaped edge (AGNRs) are comprehensively investigated by density functional theory with quasi-particle corrections and many body, i.e., electron-hole, interactions. Compared with single-walled carbon nanotubes (SWCNTs) where the scaling character features a single exponent, each family of AGNRs has its own single exponent, due to its intrinsic zero curvature, which also accounts for the absent "family spreading" of optical transition energies in the smaller width region in the Kataura plots of AGNRs as compared to those of SWCNTs. Moreover, the scaling relation between exciton binding strength and the geometric parameter is established.  相似文献   

18.
19.
The interaction of acetone with single wall carbon nanotubes (SWCNTs) at low temperatures was studied by a combination of temperature programmed desorption (TPD) and dispersion-augmented density-functional-based tight binding (DFTB-D) theoretical simulations. On the basis of the results of the TPD study and theoretical simulations, the desorption peaks of acetone can be assigned to the following adsorption sites: (i) sites with energy of approximately 75 kJ mol (-1) ( T des approximately 300 K)endohedral sites of small diameter nanotubes ( approximately 7.7 A); (ii) sites with energy 40-68 kJ mol (-1) ( T des approximately 240 K)acetone adsorption on accessible interstitial, groove sites, and endohedral sites of larger nanotubes ( approximately 14 A); (iii) sites with energy 25-42 kJ mol (-1) ( T des approximately 140 K)acetone adsorption on external walls of SWCNTs and multilayer adsorption. Oxidatively purified SWCNTs have limited access to endohedral sites due to the presence of oxygen functionalities. Oxygen functionalities can be removed by annealing to elevated temperature (900 K) opening access to endohedral sites of nanotubes. Nonpurified, as-received SWCNTs are characterized by limited access for acetone to endohedral sites even after annealing to elevated temperatures (900 K). Annealing of both purified and as-produced SWCNTs to high temperatures (1400 K) leads to reduction of access for acetone molecules to endohedral sites of small nanotubes, probably due to defect self-healing and cap formation at the ends of SWCNTs. No chemical interaction between acetone and SWCNTs was detected for low temperature adsorption experiments. Theoretical simulations of acetone adsorption on finite pristine SWCNTs of different diameters suggest a clear relationship of the adsorption energy with tube sidewall curvature. Adsorption of acetone is due to dispersion forces, with its C-O bond either parallel to the surface or O pointing away from it. No significant charge transfer or polarization was found. Carbon black was used to model amorphous carbonaceous impurities present in as-produced SWCNTs. Desorption of acetone from carbon black revealed two peaks at approximately 140 and approximately 180-230 K, similar to two acetone desorption peaks from SWCNTs. The characteristic feature of acetone desorption from SWCNTs was peak at approximately 300 K that was not observed for carbon black. Care should be taken when assigning TPD peaks for molecules desorbing from carbon nanotubes as amorphous carbon can interfere.  相似文献   

20.
The orientation and hydrogen bonding of water molecules in the vapor/water interfacial region in the presence of SO2 and CO2 gas are examined using vibrational sum-frequency spectroscopy (VSFS) to gain insight into the adsorption and reactions of these gases in atmospheric aerosols. The results show that an SO2 surface complex forms when the water surface is exposed to an atmosphere of SO2 gas. Reaction of SO2 with interfacial water leads to other spectral changes that are examined by studying the VSF spectra and surface tension isotherms of several salts added to the aqueous phase, specifically NaHSO3, NaHCO3, Na2SO3, Na2CO3, Na2SO4, and NaHSO4. The results are compared with similar studies of CO2 adsorption and reaction at the surface. A weakly bound surface complex is not observed with CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号