首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Urine samples obtained from drug abusers were screened for drugs of abuse and their metabolites using DESI-MS and the results obtained were compared to results obtained from GC-MS experiments. The detected analyte classes included amphetamines, opiates, cannabinoids and benzodiazepines. The compounds detected were codeine, morphine, oxymorphone, 11-nor-9-carboxy-Delta(9)-tetrahydrocannabinol, Delta(9)-tetrahydrocannabinol, alprazolam, temazepam, oxazepam, N-desmethyldiazepam (nordiazepam) and hydroxytemazepam. Identities of all the analytes were confirmed by tandem mass spectrometry, matching MS/MS spectra with authentic standard compounds. The concentrations of the analytes in the samples were obtained from semi-quantitative GC-MS studies and were in the range of 270-22,000 ng mL(-1). The analytes could be detected by DESI even after a hundred-fold dilution indicating that the sensitivity of DESI was more than adequate for this study. Selectivity in the DESI-MS measurements for different kinds of analytes could be increased further by optimizing the spray solvent composition: the use of an entirely aqueous solvent enhanced the signal of polar analytes, such as the benzodiazepines, whereas the use of a spray solvent with a high organic content increased the signal of less polar analytes, such as codeine and morphine.  相似文献   

2.
Simultaneous determination of opiates and their glucuronides in body fluids has a great practical interest in the forensic assessment of heroin intoxication. A selective and sensitive method for quantification of morphine and its 3- and 6-glucuronides, codeine, codeine glucuronide and 6-monoacetylmorphine (6-MAM) based on liquid chromatography-electrospray ionisation mass spectrometry is described. The drugs were analysed in human autopsy whole blood after solid-phase extraction on a C8 cartridge. The separation was performed on an ODS column in acetonitrile (analysis time 15 min). For the quantitative analysis, deuterated analogues of each compound were used as internal standards. Selected-ion monitoring was applied where the molecular ion was chosen for quantification. The limits of quantification were 0.5 ng/ml for morphine and 6-MAM and 1 ng/ml for the 6-glucuronide of morphine, codeine-6-glucuronide and codeine and 5 ng/ml for the 3-glucuronide of morphine.  相似文献   

3.
A liquid chromatographic-electrospray ionization-tandem mass spectrometric method for the quantification of the opiates morphine, codeine, and their metabolites morphine-3-beta-D-glucuronide (M-3-G), morphine-6-beta-D-glucuronide (M-6-G) and codeine-6-beta-D-glucuronide (C-6-G) in human urine has been developed and validated. Identification and quantification were based on the following transitions: 286 to 201 and 229 for morphine, 300 to 215 and 243 for codeine, 462 to 286 [corrected] for M-3-G, 462 to 286 for M-6-G, and 476 to 300 for C-6-G. Calibration by linear regression analysis utilized deuterated internal standards and a weighting factor of 1/X. The method was accurate and precise across a linear dynamic range of 25.0 to 4000.0 ng/ml. Pretreatment of urine specimens using solid phase extraction was sufficient to limit matrix suppression to less than 40% for all five analytes. The method proved to be suitable for the quantification of morphine, codeine, and their metabolites in urine specimens collected from opioid-dependent participants enrolled in a methadone maintenance program.  相似文献   

4.
A rapid multiresidue method for the analysis of more than 40 herbicides (such as simazine, terbuthylazine and diuron) in waters has been developed and validated by ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC/MS/MS). Prior to chromatographic determination, the samples were extracted using a solid-phase extraction procedure. The analysis was performed on an Acquity UPLC BEH C(18) column using a gradient elution profile and a mobile phase consisting of methanol and an aqueous solution of formic acid (0.01%). Other chromatographic and MS/MS parameters were optimised in order to improve selectivity and sensitivity of the analytes. The analytes were detected using electrospray ionisation (ESI)-MS/MS in positive ion mode with multiple reaction monitoring (MRM), optimising parameters such as voltage cone, capillary voltage, source and desolvation temperature, and desolvation and cone gas flow. The optimised method provides a rapid separation (less than 10 min) of the selected herbicides in the assayed matrices, and it was validated by the analysis of spiked blank matrix samples. Good linearity was obtained and the repeatability of the method was less than 20% for the lowest calibration point. The limits of detection ranged from 0.002 to 0.02 microg/L, and the limits of quantification from 0.005 to 0.05 microg/L, which were below the values specified by the European Union. Finally, the method was successfully applied to real environmental samples from Andalusia (southern Spain). Terbuthylazine, simazine, atrazine desisopropyl and desethyl terbuthylazine were the herbicides most frequently found in water samples.  相似文献   

5.
There are three types of opiate alkaloids. First, the poppy alkaloids: morphine, codeine, thebaine, noscapine and papaverine; then, the semi-synthetic and synthetic derivatives used in therapy as antitussives and analgesics, such as pholcodine, ethylmorphine and dextromethorphan; at last narcotic compounds, diacetylmorphine (heroin) and opiates employed as substitutes in treatment of addiction: buprenorphine and methadone. For classical thin-layer chromatography (TLC) of opium alkaloids, it is necessary to use complex eluents with strong alkaline substances to obtain a clean separation between morphinan and isoquinoline compounds. This study purposes the planar chromatographic analysis of these substances by the automated multiple development (AMD) compared with results obtained by classical TLC method. The aim of this work was to achieve the best separation of these opiate alkaloids and derivatives by this modern technique of planar chromatography. The AMD system provided a clean separation for each of three opiates groups studied and the best results have been obtained with universal gradient: methanol 100, methanol-dichloromethane 50/50, dichloromethane 100, dichloromethane 100, hexane 100 for opium alkaloids and with gradient A: 5% of 28% ammonia in methanol 100, acetone 100, acetone 100, ethyl acetate-dichloromethane 50/50, dichloromethane 100 for antitussives and substitutes. Two reagents were used for the detection of alkaloids by spraying: Dragendorff and iodoplatinate reagents. The detection limits with these two reagents were 1 microg for ethylmorphine, thebaine, papaverine, codeine, and 2 microg for morphine and noscapine and other alkaloids.  相似文献   

6.
张爱芝  王全林  莫世杰# 《色谱》2010,28(11):1015-1019
建立了超高效液相色谱-串联质谱(UPLC-MS/MS)同时测定食用油中δ-9-四氢大麻酚(THC)、大麻酚(CBN)和大麻二酚(CBD)的方法。目标分析物经甲醇提取、中性氧化铝固相萃取柱净化后,采用UPLC-MS/MS分离和检测。实验以氘代四氢大麻酚(THC-D3)为内标物,采用同位素内标法定量。在3个添加水平下,目标物的平均回收率为68.0%~101.6%,相对标准偏差为7.0%~20.1%。方法检出限为0.06~0.17 μg/kg,定量限为0.20~0.52 μg/kg。该方法能够满足食用油中痕量四氢大麻酚、大麻酚和大麻二酚检测的需要。  相似文献   

7.
A rapid and sensitive method for the simultaneous confirmatory analysis of three forensic most relevant cannabinoids, Delta(9)-tetrahydrocannabinol (THC), 11-hydroxy-Delta(9)-tetrahydrocannabinol (11-OH-THC) and 11-nor-9-carboxy-Delta(9)-tetrahydrocannabinol (THC-COOH), by means of high-performance liquid chromatography/tandem mass spectrometry (LC/MS/MS) in human plasma was developed and fully validated. Sample clean-up was performed by automated silica-based solid-phase extraction and the separation was carried out using a PhenylHexyl column (50 x 2 mm i.d., 3 micro m) and acetonitrile-5 mM ammonium acetate gradient elution. Data were acquired with an API 3000 LC/MS/MS system equipped with a turboionspray interface and triple quadrupole mass analyzer using positive electrospray ionization and multiple reaction monitoring. Two MS/MS transitions for each substance were monitored and deuterated analogues of analytes were used as internal standards for quantitation. The limit of quantitation was 0.8 ng ml(-1) for THC, 0.8 ng ml(-1) for 11-OH-THC and 4.3 ng ml(-1) for THC-COOH and linearity with a correlation coefficient r(2) = 0.999 was achieved up to 100 ng ml(-1) for THC and 11-OH-THC and 500 ng ml(-1) for THC-COOH. The limits of detection were 0.2 ng ml(-1) for THC, 0.2 ng ml(-1) for 11-OH-THC and 1.6 ng ml(-1) for THC-COOH. The developed LC/MS/MS method was also successfully used for the determination of THC-COOH-glucuronide, the phase II metabolite of THC-COOH.  相似文献   

8.
An ultra-high-performance liquid chromatography–electrospray ionization–tandem mass spectrometry method for the direct analysis in oral fluid (OF) of several abused drugs and metabolites in a single chromatographic run was set up and validated. Amphetamine, methamphetamine, morphine, O-6-monoacetylmorphine, cocaine, codeine, methylenedioxymethamphetamine (MDMA), methylenedioxyethylamphetamine, methylenedioxyamphetamine, methadone, benzoylecgonine (BEG), Δ9-tetrahydrocannabinol (THC), ketamine, and cocaethylene were determined in a single chromatographic run with no sample pretreatment, after addition of the respective deuterated internal standards. The method was designed to perform a confirmation analysis on the residual OF samples after the preliminary on-site screening test, and it was applied on preservative buffers from different devices (Mavand Rapidstat, Concateno DDS, and Greiner Bio-One) or on neat OF samples. The method was suitable to be applied to the small amounts of sample available for the confirmatory analysis after the preliminary on-site screening or on undiluted OF samples. Limits of detection varied from 5 (morphine) to 0.2 ng/mL (methamphetamine, MDMA, BEG, and cocaethylene). The method was linear for all the substances involved, giving quadratic correlation coefficients of >0.99 in all the different preservative buffers checked. In addition, repeatability and accuracy were satisfactory for the majority of the substances, except for a few cases. The developed method was subsequently applied to 466 residual samples from on-site screening performed by police officers. Of these samples, 74 showed the presence of cocaine and metabolites; THC was detected in 49 samples. Two samples showed codeine and morphine while MDMA was detected in 11 samples and ketamine in four samples.  相似文献   

9.
A simple and reliable micellar liquid chromatographic method was developed for the simultaneous determination of 3 opiates (codeine, morphine, and thebaine) in serum, using direct injection and ultraviolet detection. The separation of the drugs was optimized on a C18 column, thermostatically controlled at 25 degrees C, by evaluating mobile phases containing sodium dodecyl sulfate (SDS) and various modifiers (propanol, butanol, or pentanol). Adequate resolution of the opiates was obtained with a chemometrics approach, in which retention was modeled as a first step by using the retention factors for several mobile phases. Next, an optimization criterion that takes into account the position and shape of the chromatographic peaks was applied. The 3 opiates were totally resolved and determined in 12 min with the mobile phase 0.15M SDS-7% (v/v) butanol buffered at pH 7. The limits of detection for codeine and morphine were greatly improved by using fluorimetric detection. Repeatability and intermediate precision were tested for 3 different concentrations of the drugs, and the relative standard deviations were <0.8% for most of the assays. Finally, the method was successfully applied to the determination of morphine and codeine in serum samples.  相似文献   

10.
A monolithic spin column was developed for the extraction of analytes from biological materials. This column was constructed by packing a monolithic silica disk into a spin column. Sample loading, washing, and elution of the target drugs were accomplished simply by centrifugation of the column. Opiates and benzodiazepines are abused throughout the world. Identification and quantification of these drugs is very important to solve crimes or the cause of death. Three opiates (morphine, codeine, and dihydrocodeine) were extracted from urine and serum by using the column. After conversion to trimethylsilyl derivatives of the opiates by vigorous mixing with the derivatizing reagent, the solution was subjected to GC/MS. A linear curve was observed for opiates from 10 to 2500 ng/mL in urine and 5 to 1200 ng/mL in serum, respectively (correlation coefficient > 0.996). For benzodiazepines, the hydroxyl metabolites of triazolam and etizolam were extracted from urine using the column, and the eluate was directly analyzed by HPLC/MS without evaporation. The LOD values were at the ppb level, with RSD values lower than 15%. The proposed methods were successfully applied to clinical and forensic cases, and good agreement of results was obtained compared to conventional methods.  相似文献   

11.
A fast and highly sensitive electrospray ionization tandem mass spectrometry (ESI-MS/MS) method has been developed for the simultaneous determination of morphine, 6-methylacetylmorphine (6-MAM), codeine, cocaine and benzoylecgonine (BZE) in hair from drug abusers. Pulverized hair samples were subjected to an optimized matrix solid phase dispersion (MSPD) procedure with alumina, followed by diluted hydrochloric acid elution on column solid-phase extraction (SPE) clean-up/pre-concentration. Alternatively, samples were also subjected to an optimized ultrasound assisted enzymatic hydrolysis (USEH) with Pronase E, followed by an off-line SPE clean up/pre-concentration procedure. Positive electrospray ionization and multiple reaction monitoring (MRM) with one precursor ion/product ion transition were used for the identification and quantification (deuterated analogues of each target as internal standards) of each analyte. The chromatographic pump and the autosampler were used for injecting the standards and the hair extracts (20 μL) as a flow injection analysis mode. The highest sensitivity was achieved when delivering the targets with an acetonitrile/water/formic acid (80/19.875/0.125) mixture. The limits of detection of the method were 39.2, 4.4, 6.8, 7.0 and 7.4 ng g(-1) for morphine, 6-MAM, codeine, cocaine and BZE, respectively. Relative standard deviations of intra- and inter-day precision were lower than 9 and 12%, respectively; whereas, analytical recoveries ranged from 96±5 to 106±4%. The developed method (MSPD-ESI-MS/MS) was applied to different hair samples from polydrug abusers, and results were statistically compared to those obtained after a conventional gas chromatography-mass spectrometry (GC-MS) analysis and also after USEH and ESI-MS/MS or GC-MS determinations.  相似文献   

12.
It is of importance to differentiate heroin intake from the absorption of opiate-containing pharmaceuticals or opiates from other sources. A method for the routine determination of O6-monoacetylmorphine (6-MAM), the specific metabolite of heroin in human urine, by gas chromatography and classical detectors without having recourse to gas chromatography/mass spectrometry-selected ion mode (GC/MS-SIM) is described. With dual detection by nitrogen selective and flame ionization detectors, the limits of detection for 6-MAM were determined to be 2 ng/mL and 4 ng/mL urine for a 10 mL sample. When applied to urines preliminarily screened for opiates, the results appeared consistent in comparison with those obtained by GC/MS-SIM. The method was also developed for the simultaneous quantitative analysis of morphine and codeine. The linearity was tested up to 600 ng/mL for the three compounds of interest 6-MAM, morphine and codeine and their absolute recoveries were 76%, 78%, 75% respectively.  相似文献   

13.
Opiates such as hydrocodone, hydromorphone, oxycodone, noroxycodone, and oxymorphone reportedly may interfere with the analysis of morphine and codeine. The analysis of these compounds themselves also is an important issue. Thus, double derivatization approaches utilizing methoxyamine and hydroxylamine to first form oxime products with keto-opiates, followed by the derivatization with trimethylsilyl (TMS) or propionyl groups, have been developed for the simultaneous analysis of these compounds. However, these studies have not included all compounds of interest and resulted in inadequate chromatographic resolution or significant intensity cross-contribution between the ions designating the analyte and its deuterated internal standard for certain compounds. By exploring three-step derivatization approaches with the combination of various derivatization groups and orders, this study concluded that application of methoxyimino/propionyl/TMS groups, in the order listed, facilitated the simultaneous analysis of eight opiates (morphine, 6-acetylmorphine, hydromorphone, oxymorphone, codeine, hydrocodone, oxycodone and noroxycodone) in urine samples, achieving satisfactory limits of quantitation and detection. In addition, the adapted approach resulted in two usable products for morphine and codeine providing alternatives, should interferences render any of these products non-usable.  相似文献   

14.
A simple procedure combining headspace solid-phase microextraction (HS-SPME) and gas chromatography–mass spectrometry (GC/MS) to detect and quantify amphetamines, ketamine, methadone, cocaine, cocaethylene and ∆9-tetrahydrocannabinol (THC) in hair is described. This procedure allows, in a single sample, even scant, analysis of drugs requiring different analytical conditions. A hair sample (10 mg) is washed and subjected to acidic hydrolysis. Then the HS-SPME is carried out (10 min at 90 °C) for amphetamines, ketamine, methadone, cocaine and cocaethylene. For derivatization of analytes, the fibre is introduced into the headspace of another closed vial containing acetic anhydride. After a chromatographic run, an alkaline hydrolysis for THC analysis is carried out in the same vial containing the hair sample previously used. For adsorption, the solid-phase microextraction needle is inserted into the headspace of the vial and the fibre is exposed for 30 min at 150 °C. For derivatization of analytes, the fibre is introduced into the headspace of another closed vial containing N-methyl-N-(trimethylsilyl)trifluoroacetamide. The GC/MS parameters were the same for both chromatographic runs. The linearity was proved to be between 0.01 and 10.00 ng/mg. The repeatability (intra- and interday precision) was below 10% as the coefficient of variation for all compounds. The accuracy, as the relative recovery, was 96.2–103.5% (spiked samples) and 88.6–101.7% (quality control sample). The limit of detection ranged from 0.01 to 0.12 ng/mg, and the limit of quantification ranged from 0.02 to 0.37 ng/mg. Application of the procedure to real hair samples is described. To the best of our knowledge, the proposed procedure combining HS-SPME and GC/MS is the first one be to successfully applied to the simultaneous determination of most of the common recreational drugs, including THC, in a single hair sample.  相似文献   

15.
A simple and robust method using solid-phase extraction (SPE) and liquid chromatography tandem mass spectrometry (LC-MS/MS) for the simultaneous determination of 14 drugs of abuse and their metabolites (cocainics, amphetamine-like compounds, cannabinoids, and opiates) in surface waters has been developed. Seven SPE adsorbents (Oasis HLB, Oasis MCX, Oasis Wax, Supelselect HLB, Strata-X, Strata-XCW), amount of sorbent bed, water volume, and pH were investigated. The highest recoveries, as well as the simplest protocol, were obtained for Oasis HLB cartridges (6 mL/200 mg) using 250 mL of water. The proposed method was linear in a concentration range from 0.03–6 to 300–60,000 ng/L depending on the compound, with correlation coefficients higher than 0.998. Matrix effects have been studied in surface water samples, and several isotope-labeled internal standards have been evaluated as a way to compensate the signal suppression observed. Limits of detection (LODs) and quantification (LOQs) ranged from 0.01 to 1.54 ng/L and from 0.03 to 5.13 ng/L, respectively. Recoveries were 71–102% at the LOQ level and 77–104 at 50 ng/L. The intra-day and intermediate precisions were from 1% to 8% and from 2% to 11%, respectively. The present work reports for the first time the occurrence of drugs of abuse residues in surface water samples from the Natural Park of L’Albufera (Valencia, Spain). Codeine, cocaine, benzoylecgonine, ecgonine methylester, amphetamine, 3,4-methylendioxy methamphetamine, morphine, and methadone were quantified with median values of 11.10, 0.02, 5.59, 0.08, 0.21, 0.75 and 0.14 ng/L respectively, and 11-nor-9-carboxy-Δ9-tetrahydrocannabinol was detected in one sample at levels <LOQ.  相似文献   

16.
An LC-MS/MS method using 0.5 ml of oral fluid was developed for the determination of morphine, codeine, 6-monoacetylmorphine, methadone, amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine, 3,4-methylenedioxymethamphetamine, 3,4-methylenedioxy-N-ethylamphetamine, benzoylecgonine, cocaine, delta-9-tetrahydrocannabinol, zolpidem, zopiclone, alprazolam, clonazepam, oxazepam, nordiazepam, lorazepam, flunitrazepam, diazepam, diphenhydramine and amitriptyline. The method was fully validated in terms of linearity (the method was linear between 1–5 μg/L and 100–200 μg/L) recoveries (7.5–82.6%), within-day and between-day precisions and accuracies (CV and MRE, both <15%), limits of detection (0.5 μ g/L) and quantitation (the lowest point on the calibration curve), relative ion intensities, freeze-and-thaw stability and matrix effect. The method was applied to preserved oral fluid collected by a special commercial device, the StatSure Saliva Sampler™.  相似文献   

17.
A fast gas chromatography (GC)-MS method has been developed and validated for the simultaneous screening of different classes of drugs of abuse in urine. Tetrahydrocannabinol metabolite, cocaine, opiates such as morphine, O-6-monoacetylmorphine (O-6-MAM), codeine, opioids such as buprenorphine, methadone, pentazocine, fentanyl and analogues and their main metabolites can be detected and quantified after a simple liquid-liquid extraction in alkaline conditions and derivatisation to obtain the corresponding trimethylsilyl derivatives. The chromatographic separation is performed in a total time of 6 min, using a short GC column (5% phenyl methyl silicone, 10-m length × 0.18-mm internal diameter). The Limits of Detection are satisfactory for forensic purposes for all the substances; the repeatability of concentrations (percent coefficients of variation) are always lower than 15% at high and low concentration levels, and accuracy, intended as % error on the true value, is always lower than 15% for all the analytes. The method can successfully be applied for screening analyses in many fields of forensic toxicology.  相似文献   

18.
A two-dimensional (2D) gas chromatography/electron impact-mass spectrometry (GC/EI-MS) method for simultaneous quantification of Delta(9)-tetrahydrocannabinol (THC), 11-hydroxy-Delta(9)-tetrahydrocannabinol (11-OH-THC), and 11-nor-Delta(9)-tetrahydrocannabinol-9-carboxylic acid (THCCOOH) in human plasma was developed and validated. The method employs 2D capillary GC and cryofocusing for enhanced resolution and sensitivity. THC, 11-OH-THC, and THCCOOH were extracted by precipitation with acetonitrile followed by solid-phase extraction. GC separation of trimethylsilyl derivatives of analytes was accomplished with two capillary columns in series coupled via a pneumatic Deans switch system. Detection and quantification were accomplished with a bench-top single quadrupole mass spectrometer operated in electron impact-selected ion monitoring mode. Limits of quantification (LOQ) were 0.125, 0.25 and 0.125 ng/mL for THC, 11-OH-THC, and THCCOOH, respectively. Accuracy ranged from 86.0 to 113.0% for all analytes. Intra- and inter-assay precision, as percent relative standard deviation, was less than 14.1% for THC, 11-OH-THC, and THCCOOH. The method was successfully applied to quantification of THC and its 11-OH-THC and THCCOOH metabolites in plasma specimens following controlled administration of THC.  相似文献   

19.
An analytical method for the simultaneous determination of codeine, morphine and 6-acetylmorphine (6AM) in human oral fluid was developed. The method involves liquid-liquid extraction in Toxitubes A, derivatization with 99:1 (v/v) N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA)/trimethylchlorosilane (TMCS), and gas chromatography/mass spectrometry with positive chemical ionization (GC/PCI-MS) determination. The detector response was linear over the concentration range 30-500 ng/mL with coefficients of correlation higher than 0.99. The precision was acceptable with coefficients of variation less than 7.5%. The limits of detection achieved were 0.7 ng/mL for codeine, 2.0 ng/mL for morphine, and 0.6 ng/mL for 6AM. The method proposed was applied to 80 oral fluid samples from opiates users, 98% of which were positive for the three analytes. Human oral fluid is a suitable biological fluid for the determination of opiates by GC/PCI-MS.  相似文献   

20.
A rapid and sensitive high‐performance LC‐MS/MS method was developed and validated for the simultaneous quantification of codeine and its metabolite morphine in human plasma using donepezil as an internal standard (IS). Following a single liquid‐liquid extraction with ethyl acetate, the analytes were separated using an isocratic mobile phase on a C18 column and analyzed by MS/MS in the selected reaction monitoring mode using the respective [M+H]+ ions, mass‐to‐charge ratio (m/z) 300/165 for codeine, m/z 286/165 for morphine and m/z 380/91 for IS. The method exhibited a linear dynamic range of 0.2–100/0.5–250 ng/mL for codeine/morphine in human plasma, respectively. The lower LOQs were 0.2 and 0.5 ng/mL for codeine and its metabolite morphine using 0.5 mL of human plasma. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. A run time of 2.0 min for each sample made it possible to analyze more than 300 human plasma samples per day. The validated LC‐MS/MS method was applied to a pharmacokinetic study in which healthy Chinese volunteers each received a single oral dose of 30 mg codeine phosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号