首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tri-iodide transport in a polymer gel electrolyte embedded in nanoporous TiO(2) networks and its diffusion limits are investigated by means of current-voltage (I-V) characteristics of simple Pt-gel-Pt sandwich devices with a thin porous TiO(2) layer sintered directly onto one of the Pt electrodes. At voltages between 0.2 and 0.7 V, the I-V curves of such devices show the typical plateau of diffusion-limited redox reactions, in this case I(-)/I(3) (-), at the platinum electrodes. From the dependence of the limiting current density on layer thickness, the diffusion constants D(bulk) and D(p,eff) of tri-iodide in the bulk polymer gel and through a polymer gel penetrated TiO(2) network, respectively, have been found to be D(bulk)=3.2(+/-0.2)x10(-6) cm(2)/s and D(p,eff)=1.5(+/-0.1)x10(-6) cm(2)/s. Temperature-dependent measurements show diffusion in the gel to be activated by about 0.16 eV. The results are discussed in comparison to diffusion in liquid electrolytes as well as with respect to the implications for dye-sensitized solar cell devices.  相似文献   

2.
The present work reports the tracer diffusion coefficient for (93)Nb in rutile TiO(2) single crystals using secondary ion mass spectrometry (SIMS). The determined tracer diffusion coefficient exhibited the following temperature dependence in air ( p(O2) = 21 kPa) over the range 1073-1573 K: D93(Nb) = (4.7 m2 s(-1))x10(-7+/-0.4) exp ((-244 +/- 9 kJ mol-1)/RT) Through comparison to the self-diffusion of (44)Ti in rutile TiO(2), (93)Nb is interpreted to diffuse via the interstitialcy mechanism. The obtained tracer diffusion data are useful for ensuring compositional control during the processing of Nb-doped TiO(2)-based semiconductors using solid-state reactions between Nb(2)O(5) and TiO(2).  相似文献   

3.
We present novel nanoporous TiO(2)/polyion thin-film-coated long-period fiber grating (LPFG) sensors for the direct measurement of low-molecular-weight chemicals by monitoring the resonance wavelength shift. The hybrid overlay films are prepared by a simple layer-by-layer deposition approach, which is mainly based on the electrostatic interaction of TiO(2) nanoparticles and polyions. By the alternate immersion of LPFG into dispersions of TiO(2) nanoparticles and polyions, respectively, the so-formed TiO(2)/polyion thin film exhibits a unique nanoporous internal structure and has a relative higher refractive index than LPFG cladding. In particular, the porosity of the thin film reduces the diffusion coefficient and enhances the permeability retention of low-molecular-weight analytes within the porous film. The increases in the refractive index of the LPFG overlay results in a distinguished modulation of the resonance wavelength. Therefore, the detection sensitivity of LPFG sensors has been greatly improved, according to theoretical simulation. After the structure of the TiO(2)/polyion thin film was optimized, glucose solutions as an example with a low concentration of 10(-7) M was easily detected and monitored at room temperature.  相似文献   

4.
Thin films of TiO2 (anatase) nanoparticles are assembled at an electrode surface via a layer-by-layer deposition process employing phytic acid, pyromellitic acid, or flavin adenine dinucleotide (FAD) as molecular binders. With all three types of binders, layers of typically 30 nm thickness are formed each deposition cycle. FAD as an electrochemically active component immobilized at the surface of the TiO2 particles is reduced to FADH2 and reoxidized in a chemically reversible two electron-two proton redox process. Two distinct voltammetric signals are observed for the immobilized FAD redox system associated with (i) hopping of electrons at the TiO2 surface (reversible) and (ii) conduction of electrons through the TiO2 assembly (irreversible). The conduction of electrons through the TiO2 assembly is possible by diffusion over considerable distances as well as through a "spacer" layer of TiO2 phytate. An order of magnitude (upper limit) estimate for the diffusion coefficient of electrons through TiO2 phytate, D(electron) approximately 10(-6) m(2) s(-1), is obtained from voltammetric data. Finally, it is demonstrated that the calcination of TiO2 assemblies causes dramatic changes in the electron transfer kinetics for the immobilized FAD/FADH2 redox system.  相似文献   

5.
The interaction of HONO with TiO(2) solid films was studied under dark conditions using a low pressure flow reactor (1-10 Torr) combined with a modulated molecular beam mass spectrometer for monitoring of the gaseous species involved. The reactive uptake of HONO to TiO(2) was studied as a function of HONO concentration ([HONO)(0) = (0.3-3.3) × 10(12) molecules cm(-3)), water concentration (RH = 3 × 10(-4) to 13%), and temperature (T = 275-320 K). TiO(2) surface deactivation upon exposure to HONO was observed. The measured initial uptake coefficient of HONO on TiO(2) surface was independent of the HONO concentration and showed slight negative temperature dependence (activation factor = -1405 ± 110 K). In contrast, the relative humidity (RH) was found to have a strong impact on the uptake coefficient: γ(0) = 1.8 × 10(-5) (RH)(-0.63) (calculated using BET surface area, 40% uncertainty) at T = 300 K. NO(2) and NO were observed as products of the HONO reaction with TiO(2) surface with sum of their yields corresponding to nearly 100% of the nitrogen mass balance. The yields of the NO and NO(2) products were found to be 42 ± 7% and 60 ± 9%, respectively, independent of relative humidity, temperature, and concentration of HONO under experimental conditions used. The contribution of aerosol to the total HONO loss in the boundary layer (calculated with initial uptake data for HONO on TiO(2) surface) showed the unimportance of this process in the atmosphere. In addition, the diffusion coefficient of HONO in He was determined to be D(HONO-He) = 490 ± 50 Torr cm(2) s(-1) at T = 300 K.  相似文献   

6.
7Li magic angle spinning solid-state nuclear magnetic resonance is applied to investigate the lithium local environment and lithium ion mobility in tetragonal anatase TiO(2) and orthorhombic lithium titanate Li(0.6)TiO(2). Upon lithium insertion, an increasing fraction of the material changes its crystallographic structure from anatase TiO(2) to lithium titanate Li(0.6)TiO(2). Phase separation occurs, and as a result, the Li-rich lithium titanate phase is coexisting with the Li-poor TiO(2) phase containing only small Li amounts approximately equal to 0.01. In both the anatase and the lithium titanate lattice, Li is found to be hopping over the available sites with activation energies of 0.2 and 0.09 eV, respectively. This leads to rapid microscopic diffusion rates at room temperature (D(micr) = 4.7 x 10(-12) cm(2)s(-1) in anatase and D(micr) = 1.3 x 10(-11) cm(2)s(-1) in lithium titanate). However, macroscopic intercalation data show activation energies of approximately 0.5 eV and smaller diffusion coefficients. We suggest that the diffusion through the phase boundary is determining the activation energy of the overall diffusion and the overall diffusion rate itself. The chemical shift of lithium in anatase is independent of temperature up to approximately 250 K but decreases at higher temperatures, reflecting a change in the 3d conduction electron densities. The Li mobility becomes prominent from this same temperature showing that such electronic effects possibly facilitate the mobility.  相似文献   

7.
The exciton diffusion length in a nematically organized meso-tetra(4-n-butylphenyl)porphyrin (TnBuPP) layer was found to exceed 40 nm at a temperature of 90 K and to be equal to 22 +/- 3 nm at 300 K. The exciton diffusion coefficient decreases from > or = 3.1 x 10(-6) m(2)/s at 90 K to (2.5 +/- 0.5) x 10(-7) m(2)/s at 300 K. This thermal deactivation is attributed to exciton motion via a band mechanism. The motion of an exciton is not limited by polaronic effects; that is, the deformation of the atomic lattice around the exciton. The absence of polaronic self-trapping implies that the exciton diffusion coefficient can be enhanced by improvement of structural order and rigidity of the material.  相似文献   

8.
A simple and effective way for TiO(2) to be deposited on silicon or indium tin oxide (ITO) substrates has been achieved by using a poly(styrene-block-4-vinyl pyridine) (PS-b-P4VP) block copolymer template. In particular, a mechanism for the formation of TiO(2) within the P4VP phase was developed. Within this model, the TiO(2) deposition occurs by swelling of the protonated P4VP segments followed by transport of Ti precursor, probably protonated Ti(OH)(4) given the low pH conditions used, into the swollen P4VP followed by condensation into TiO(2) during the heating/plasma etch processes. TiO(2) nanostructure morphology is affected by pH and deposition temperatures, because these parameters affect the degree of protonation of P4VP segments and diffusion of the titanium(IV) bis(ammonium lactato)dihydroxide (TALH) precursor into the film. A pH range of 2.1-2.5 for silicon substrates and pH = 2.1 for ITO substrates gave the narrower TiO(2) nanostructures distributions, and deposition at 70 °C gave TiO(2) nanostructures with more regular arrangements and smoother surface than those deposited at room temperature. The use of 1,4-diiodobutane as a P4VP cross-linking compound is demonstrated to be a critical parameter for maintaining good cylindrical surface morphology for both the block copolymer template and the TiO(2) nanostructures.  相似文献   

9.
The adsorption of ruthenium-dye molecules out of ethanol solution onto TiO2 particles of nanoporous TiO2 films was used to study the molecules' diffusion through these layers by means of optical absorption spectrometry. Dependent on pore size, porosity, and particle size, effective diffusion constants as low as D(eff) = 4 x 10(-9) cm2/s were deduced from the uptake curves by applying a simple model for combined diffusion and adsorption. These diffusion constants for diffusion through the nanoporous network are up to 3 orders of magnitude lower than in bulk ethanol and are discussed with respect to the properties of the nanoporous material.  相似文献   

10.
Measurements of both electrical conductivity and thermoelectric power were used to monitor the equilibration kinetics of undoped single-crystal TiO(2) during prolonged oxidation at 1123 and 1323 K and p(O(2)) = 75 kPa. Two kinetics regimes were revealed: kinetics regime I (rapid kinetics), which is rate-controlled by the transport of oxygen vacancies, and kinetics regime II (slow kinetics), which is rate-controlled by the transport of titanium vacancies. The incorporation of titanium vacancies allows undoped p-type TiO(2) to be processed in a controlled manner. The kinetics data were used to determine the chemical diffusion coefficient (D(chem)) associated with the transport of titanium vacancies, which is equal to D(chem) = 8.9 x 10(-14) m(2) s(-1) and D(chem) = 9.3 x 10(-15) m(2) s(-1) at 1323 and 1123 K, respectively.  相似文献   

11.
The electron diffusion coefficient at varying porosity has been determined in a series of nanostructured TiO(2) films of different initial thicknesses. The porosity was changed by applying different pressures prior to sintering, thereby modifying the internal morphology of the films though not their chemical and surface conditions. A systematic increase of the effective diffusion coefficient was observed as the porosity was decreased, indicating the improvement of the internal connectivity of the network of nanoparticles. The experimental results have been rationalized using percolation theory. First of all, applying a power law dependence, the diffusion coefficient as a function of porosity from different films collapsed in a single master curve. In addition, application of the models of effective medium approximation (EMA) allows us to compare the experimental results with previous data from Monte Carlo simulation. The different data show a similar dependence in agreement with the EMA predictions, indicating that the geometrical effect of electron transport due to variation of porous morphology in TiO(2) nanoparticulate networks is well described by the percolation concept.  相似文献   

12.
Multiple internal reflection Fourier transform infrared spectroscopy, together with other analytical techniques, was used to follow the diffusion of atomic hydrogen through a 10-nm-thick titanium carbonitride layer deposited onto a Si(100)-2x1 surface from tetrakis(dimethylamino)titanium as a chemical vapor deposition precursor. The recombinative desorption of hydrogen from the TiCN/Si interface was shown to coincide with the temperature range where most Ti-based diffusion barriers break down.  相似文献   

13.
The temperature dependence of the exciton dynamics in a conjugated polymer is studied using time-resolved spectroscopy. Photoluminescence decays were measured in heterostructured samples containing a sharp polymer-fullerene interface, which acts as an exciton quenching wall. Using a 1D diffusion model, the exciton diffusion length and diffusion coefficient were extracted in the temperature range of 4-293 K. The exciton dynamics reveal two temperature regimes: in the range of 4-150 K, the exciton diffusion length (coefficient) of approximately 3 nm (approximately 1.5 x 10 (-4) cm2/s) is nearly temperature independent. Increasing the temperature up to 293 K leads to a gradual growth up to 4.5 nm (approximately 3.2 x 10 (-4) cm2/ s). This demonstrates that exciton diffusion in conjugated polymers is governed by two processes: an initial downhill migration toward lower energy states in the inhomogenously broadened density of states, followed by temperature activated hopping. The latter process is switched off below 150 K.  相似文献   

14.
Self-assembled electrodes consisting of TiO(2) nanoparticles and poly(vinyl sulfonic acid) (PVS) were prepared by the layer-by-layer (LbL) technique. The electrostatic interaction between the TiO(2) nanoparticles and PVS allowed the growth of visually uniform multilayers of the composite, with high control of the thickness and nanoarchitecture. The electrochemical and chromogenic properties of these TiO(2)/PVS films were examined in an electrolytic solution of 0.5 M LiClO(4)/propylene carbonate. The presence of two intercalation sites was noted during the positive potential scan, and they were attributed to different mobilities of charge carriers. Several charge/discharge cycles demonstrated the trapping of charge carriers in the TiO(2) sites. The absorbance change associated with the oxidation of the trapping sites was attributed to electronic transitions involving energy states in the gap band formed due to the strong distortion of the TiO(2) host. Using the quadratic logistic equation (QLE), it was possible to analyze the electronic intervalence transfer from Ti(3+) to Ti(4+). Using the parameters obtained from this fitting, the amount of trapping sites in the LbL film was also determined. Electrochemical impedance spectroscopy (EIS) data gave the time constant associated with diffusion and the trapping sites. The diffusion coefficient of lithium ions changed from ca. 4.5 x 10(-13) cm(2) s(-1) to 3.0 x 10(-14) cm(2) s(-1) for all the potential range applied, indicating that PVS did not hinder the ionic transport within the LbL film. Finally, on the basis of the spectroelectrochemical data and scanning electron micrographs, the trapping effects were attributed to the colloidal particles of Li(0.55)TiO(2).  相似文献   

15.
The diffusion coefficient and the effective charge number of cytochrome c as a function of ionic strength, temperature and pH have been measured. The measurements were carried out using a method based on a convective diffusion process across a porous membrane. The effect of ionic strength was studied in an NaCl solution the concentration of which varied from 0.001 to 1.0 M. The temperature range studied was 10-50 degrees C, and the pH values studied were 4.0, 6.5 and 8.25. The diffusion coefficient is fairly constant as a function of ionic strength and pH, and Walden's rule is valid in the temperature range studied. The effective charge number is practically constant (ca. 2) in the concentration range studied, except in 0.001 M solution, where it is the same as the titrated value. The charge number decreases slightly in the temperature range 10-30 degrees C, but seems to drop suddenly to zero at ca. 40 degrees C. Measurements using heavy water (D2O) as a solvent instead of water did not give zero charge at 40 degrees C for cytochrome c.  相似文献   

16.
The sorption equilibrium and kinetics of cadmium ions from aqueous solution onto bone char have been studied. Equilibrium isotherms for the sorption system were correlated by Langmuir and bi-Langmuir equations. The application of the bi-Langmuir equation was developed because the mechanistic analysis in this research indicated that cadmium removal occurs ion exchange and physical adsorption onto different surface sites. The bi-Langmuir equation provides a better fit to the experimental data. In addition, the removal rates of cadmium ions based on the Langmuir models have been investigated. The effective diffusivity was calculated using the effects of initial metal ion concentration and bone char mass. Two mass-transport models based on film-pore diffusion control have been applied to analyze the concentration decay curves. The film and pore diffusion coefficients using an analytical equation are equal to 1.26x10(-3) cm/s and 5.06x10(-7) cm(2)/s, respectively. The pore diffusion coefficient obtained from the numerical method is 4.89x10(-7) cm(2)/s. A sensitivity analysis showed that the film-pore diffusion model and constant effective diffusivity could be used to describe the mass-transport mechanism of the sorption system with a high degree of correlation. Copyright 2001 Academic Press.  相似文献   

17.
TiO(2) colloids with the most probably particle size of 10 nm were deposited on the surface of macroporous diatomite by a layer-by-layer (LBL) assembly method with using phytic acid as molecular binder. For preparation of colloidal TiO(2), titanium(IV) isopropoxide (Ti(C(3)H(7)O)(4)) was used as titanium precursor, nitric acid (HNO(3)) as peptizing agent and deionized water and isopropanol (C(3)H(7)OH) as solvent. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), N(2) adsorption-desorption, and UV-vis spectra are used to assess the morphology and physical chemistry properties of the resulting TiO(2) coated diatomite. It was shown that the mesoporosity has been introduced into macroporous diatomite by LBL deposition. The mesoporosity was originated from close-packing of the uniform TiO(2) nanoparticles. More TiO(2) could be coated on the surface of diatomite by increasing the deposition cycles. This hierarchical porous material has potential for applications in catalytic reactions involved diffusion limit, especially in photocatalytic reactions.  相似文献   

18.
We present experimental and theoretical evidence of sequential redox processes and structural transformations occurring by increasing temperature in a metal/oxide/metal system obtained via deposition of Fe atoms onto a z'-TiO(1.25)/Pt(111) ultrathin film in UHV. The initial reduction of the z'-TiO(x) phase by Fe at room temperature is followed by Fe diffusion and partial penetration into the substrate at intermediate temperatures. This triggers the formation of a bi-component material in which mixed FeO/TiO(2) nanoislands coexist on a h-TiO(1.14) ultrathin film, notably restructured (from rectangular to hexagonal) and reduced (from Ti : O = 1 : 1.25 to 1 : 1.14) with respect to the original TiO(1.25) phase. Further heating recovers the pristine z'-TiO(x) phase while Fe completely dissolves into the substrate.  相似文献   

19.
The colloidal stability of TiO2 dispersions in aqueous solutions was studied. Aqueous solutions of ATLAS G-3300 (1.57 x 10(-3) mol/l), TRITON X-100 (5 x 10(-5) mol/l), and PMAA (4 x 10(-6) and 5.81 x 10(-3) mol/l) have been used as medium for redispergation of TiO2 particles. Stability of dispersions was investigated at different pH values by two different methods. By using analytical centrifuge the sedimentation velocity of TiO2 particles was directly measured and by means of light scattering the particle size of dispersed particles has been monitored. Combination of these two methods allowed determination of the aggregation degree of TiO2 particles as well as structure of the aggregates formed in aqueous phase. It has been found that redispergation process does not provide complete separation of virgin TiO2 particles. Even in the case of stable dispersions some aggregates were found, which consisted of 2-4 virgin TiO2 particles. With increasing colloidal stability of dispersions aggregates appear to be spherically shaped. In the system where TRITON X-100 was used, formation of secondary aggregates by fusion of primary ones was observed.  相似文献   

20.
不锈钢基底上TiO2薄膜型光催化剂的制备和化学结构   总被引:23,自引:0,他引:23  
朱永法  张利  王莉  付艳  曹立礼 《化学学报》2000,58(4):467-472
采用钛酸正丁酯作为前驱体,通过溶胶-凝胶法在不锈钢基片上制备了TiO2纳米薄膜。利用俄歇电子能谱(AES)和紫外反射光谱等研究手段,对TIO2薄膜的化学结构及基底材料界面相互作用进行了系统研究。结果发现,在不锈钢基底上形成的TiO2薄膜与基底材料发生了明显的界面扩散反应。在TiO2薄膜的形成过程中,不锈钢中Fe元素向TiO2薄膜层扩散,并与从大气氛中扩散到界面的氧发生化学反应,形成铁氧化物界面过渡层。界面氧化过程,导致了Fe向样品表面的偏析和扩散。在高温热处理过程中,Fe可以扩散到TiO2薄膜的表面。薄膜催化剂的紫外反射光谱表明,界面扩散反应导致了Fe扩散进入TiO2薄膜的晶格,从而改变了薄膜催化剂的光吸收性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号