首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent observations indicate that the resistance of apoptosis is an important process of tumor metastasis and metastases are the cause of 90% of human cancer death. Etoposide, a semisynthetic derivative of the podophyllotoxins, is a clinically used anti-cancer reagent, but the effects of it on metastatic gastric carcinoma cells are totally unknown. In this study, etoposide induced apoptotic cell death in human gastric adenocarcinoma cell line SGC-7901, derived from metastatic lymph nodes, as evidenced by the analysis of DNA fragmentation, apoptotic body formation, caspase activation, and apoptosis specific changes in cell morphology is demonstrated. The depolarization of mitochondrial membrane and the release of cytochrome c were most early events in etoposide treated SGC-7901 cells, and were followed by caspase-3 activation and PARP cleavage. Caspase-8 activation was not detected under the same condition. Thus, it was proposed that etoposide induces caspase-associated apoptotic cell death in human metastatic gastric carcinoma, which is initiated by mitochondrial cytochrome c release.  相似文献   

2.
In the present study, effects of aqueous extracts from Crocodylus siamensis bile (AE-CB) on SMMC-7721 cell growth, cell cycle, and apoptosis were investigated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay, inverted microscopy, fluorescence microscopy, propidium iodide (PI) single- and fluorescein isothiocyanate (FITC)/PI double-staining flow cytometry, and western blotting. Our data have revealed that AE-CB significantly inhibited the growth of SMMC-7721 cell and arrested cell cycle at G0/G1 phase. SMMC-7721 cells showed typical apoptotic morphological changes after treated with AE-CB for 48 h. Cell death assay indicated that SMMC-7721 cells underwent apoptosis in a dose-dependent manner induced by AE-CB. In addition, AE-CB treatment could downregulate the protein level of Bcl-2 and upregulate the Bax, leading to the increase in the ratio of Bax to Bcl-2 in SMMC-7721 cells. Meanwhile, it was observed that the expression of Survivin and c-Myc decreased, but the expression of P53 increased. All these events were associated with increase of reactive oxygen species. The data indicated that mitochondrial pathway might play an important role in bile extract-induced apoptosis in SMMC-7721 cells. These results provide significant insight into the anticarcinogenic action of bile extract on SMMC-7721 cells.  相似文献   

3.
Animal bile is popularly used as a traditional medicine in China, and bile acids are their major bioactive constituents. In the present study, effects of bile extract from crocodile gallbladder on QBC939 cell growth, cell cycle, and apoptosis were investigated by MTT assay, inverted microscopy, fluorescence microscopy, transmission electron microscopy, scanning electron microscopy, PI single- and FITC/PI double-staining flow cytometry, and western blotting. Our data have revealed that bile extract inhibited cells growth significantly, and the cell cycle was arrested in G1 phase. Bile extract induced QBC939 cell apoptosis, which was associated with collapse of the mitochondrial membrane potential and increase of ROS. In bile extract-treated cells, it was observed that the expression of bcl-2 decreased and cytochrome c released to cytosol, but the expression of bax remained unchanged. The data indicated that mitochondrial pathway might play an important role in bile extract-induced apoptosis in QBC939 cells. These results provide significant insight into the anticarcinogenic action of bile extract on cholangiocarcinoma cells.  相似文献   

4.
Thalictrum fortunei S. Moore, a perennial plant distributed in the southeastern part of China, has been used in Traditional Chinese Medicine for thousands of years for its antitumor, antibacterial and immunoregulatory effects. In order to investigate the active components and the mechanism of the anti-tumor effects of Thalictrum fortunei, the growth inhibitory effects of eight triterpenoids isolated from the aerial parts of the plant on tumor cell lines were examined by 3-(4,5)-dimethylthiazoy1-3,5-diphenyltetrazolium bromide (MTT) assay. The MTT-assay results showed that the inhibitory activity of 3-O-β-D-glucopyranosyl-(1→4)-β-D-fucopyranosyl(22S,24Z)-cycloart-24-en-3β,22,26-triol 26-O-β-D-glucopyranoside (1) was stronger than that of the other seven tested triterpenoids on human hepatoma Bel-7402 cell line (Bel-7402), human colon lovo cells (LoVo), human non-small cells lung cancer NCIH-460 cells (NCIH-460) and human gastric carcinoma SGC-7901 cells (SGC-7901) after 48 h treatment in vitro, with the IC(50) values of 66.4, 84.8, 73.5, 89.6 μM, respectively. Moreover, the antitumor mechanism of compound 1 on Bel-7402 cell was explored through nucleus dyeing, fluorescence assay, flow cytometry and western blot. The flow cytometric analysis results revealed that compound 1 caused apoptosis and mitochondrial membrane potential (MMP) loss in Bel-7402 cells. A fluorescence assay indicated that intracellular reactive oxygen species (ROS) were markedly provoked by compound 1 treatment compared to control cells. Immunoblot results showed that compound 1 significantly increased the expression levels of cleaved caspase-3, P53 and Bax protein, and decreased the expression level of Bcl-2 protein. These findings indicate that compound 1 inhibits the growth activity of tumor cells, probably through the P53 protein-induced apoptosis pathway.  相似文献   

5.
Yu H  Zhang T  Cai L  Qu Y  Hu S  Dong G  Guan R  Xu X  Xing L 《Molecules (Basel, Switzerland)》2011,16(10):8165-8180
In the present study, the anticancer activity of chamaejasmine towards A549 human lung adenocarcinoma cells was investigated. In order to explore the underlying mechanism of cell growth inhibition of chamaejasmine, cell cycle distribution, ROS generation, mitochondrial membrane potential (Δψ(m)) disruption, and expression of cytochrome c, Bax, Bcl-2, caspase-3, caspase-9 and PARP were measured in A549 cells. Chamaejasmine inhibited the growth of A549 cells in a time and dose-dependent manner. The IC?? value was 7.72 μM after 72 h treatment. Chamaejasmine arrested the cell cycle in the G2/M phase and induced apoptosis via a ROS-mediated mitochondria-dependent pathway. Western blot analysis showed that chamaejasmine inhibited Bcl-2 expression and induced Bax expression to desintegrate the outer mitochondrial membrane and causing cytochrome c release. Mitochondrial cytochrome c release was associated with the activation of caspase-9 and caspase-3 cascade, and active-caspase-3 was involved in PARP cleavage. All of these signal transduction pathways are involved in initiating apoptosis. To the best of our knowledge, this is the first report demonstrating the cytotoxic activity of chamaejasmine towards A549 in vitro.  相似文献   

6.
A dioxovanadium(V) complex, [VO2(moptpy)](ClO4) (1, moptpy = 4′-(3-methoxyphenyl)2,2′:6′2″-terpyridine), was synthesized and characterized by elemental analysis, ESI-MS, UV–vis, IR, and 1H, 13C, and 51V NMR. The cytotoxicity in vitro of 1 was evaluated against cancer cell lines HepG-2 (hepatocellular carcinoma), SGC-7901 (gastric carcinoma), SiHa (cervical cancer), BEL-7402 (hepatocellular), and rat PC-12 (pheochromocytoma) by the MTT method. The results demonstrated that 1 exhibits superior anticancer activity in vitro with much lower values of 50% inhibitive concentration (IC50) against the selected cell lines than cisplatin, and 1 shows the highest cytotoxic activity toward SGC-7901 cells (IC50 = 1.3 ± 0.1 μM) among the selected cell lines. A series of cellular morphological and staining experiments were carried out, and the results indicated that 1 can effectively induce apoptosis of SGC-7901 cells through a ROS-mediated mitochondrial dysfunction pathway. In addition, cellular incorporation and cell cycle analysis were also performed, and it was concluded from the experimental observations that 1 can efficiently enter into the cell nuclei, and the complex inhibits cell growth in SGC-7901 cell at G0/G1 phase.  相似文献   

7.
In this study antiproliferation, cell cycle arrest and apoptosis induced by daphnoretin in human osteosarcoma (HOS) cells were investigated. Antiproliferative activity was measured with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The IC(50) value of daphnoretin was 3.89 μM after 72 h treatment. Induction of apoptosis was evidenced by apoptotic body appearance and Annexin V-FITC/PI apoptosis detection kit. Flow cytometric analysis indicated daphnoretin arrested the cell cycle in the G2/M phase. Western-blot assay showed that the G2/M phase arrest was accompanied by down-regulation of cdc2, cyclin A and cyclin B1. Moreover, daphnoretin inhibited Bcl-2 expression and induced Bax expression to desintegrate the outer mitochondrial membrane and causing cytochrome c release. Mitochondrial cytochrome c release was associated with the activation of caspase-9 and caspase-3 cascade. Our results demonstrated that daphnoretin caused death of HOS cells by blocking cells successively in G2/M phases and activating the caspase-3 pathway.  相似文献   

8.
Triterpenoids possess a wide range of biological effects. Here, the cytotoxic activities of 55 triterpenes and derived glycosides against BEL-7404 and SGC-7901 cells were assessed, and structure-activity relationships were analysed accordingly. Nine of them effectively inhibited the two cell lines. In particular, compounds 49 and 52 inhibited BEL-7404 cells as efficiently as 5’-fluorouracil (IC50 values 0.46 and 1.48, respectively). Moreover, we found that compounds 49 and 52 induced apoptosis in BEL-7404 cells. Indeed, DNA fragmentation assay showed a time-dependent degradation of DNA after treatment of cells with compounds 49 and 52. In addition, Bax gene expression levels were increased after treatment with these compounds, in a concentration-dependent manner. Taken together, our findings suggested that compounds 49 and 52 induce apoptosis in BEL-7404 cells by upregulating the Bax gene without affecting Bcl-2 gene expression.  相似文献   

9.
Camptothecin-20(s)-O-[N-(3'α,12'α-dihydroxy-24'-carbonyl-5'β-cholan)]-lysine (B2) is a novel camptothecin analogue. Our previous study had shown that it displayed higher cytoxicity activity towards hepatocellular carcinoma SMMC-7721 cells than camptothecin (CPT) in vitro. In this paper, the underlying mechanism of anti-proliferation of B2 towards SMMC-7721 cells was further examined. Cell growth inhibition of B2 was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay; morphological changes were observed under Laser Scanning Confocal Microscope (LSCM); cell cycle distribution, apoptotic population, changes in mitochondrial membrane potential, intracellular calcium concentration and reactive oxygen species (ROS) production were determined by flow cytometry (FCM). Activities of caspase-3 and caspase-9 were measured, and the expression level of Bcl-2 and Bax proteins were analyzed by Western blot. The results suggested that B2 inhibited SMMC-7721 cell growth by causing cell cycle arrest at the S and G2/M phases, and induced apoptosis involving a mitochondrial pathway. B2 appears to cause a high induction of apoptosis on SMMC-7721 cells in vitro, which suggests it might be a potential drug for cancer therapy.  相似文献   

10.
The effects of luteolin on the proliferation of A549 cells were evaluated by MTT and clone formation assays. DNA ploidy and apoptotic cell percentage were calculated by flow cytometry. The expression of Bax, Bcl-xl, Bcl-2, Mcl-1, caspase-9, caspase-3, and PARP was analyzed by Western blotting. The membrane potential of mitochondria was detected by JC-1 fluorescence microscopy assay. Our results demonstrated that luteolin could inhibit the proliferation of A549 cells via induction of apoptosis, with the evidence of characteristic morphological changes of apoptosis in the nucleus. Furthermore, DNA flow cytometric analysis indicated that luteolin induced a S phase arrest of the cell cycle. The membrane potential of mitochondria was decreased. The protein levels of Bax, Bcl-xl, Bcl-2, Mcl-1, caspase-9, caspase-3, and PARP were activated after treatment with luteolin. Luteolin can inhibit the proliferation of A549 cells and trigger mitochondria- dependent apoptosis in them.  相似文献   

11.
Prisconnatanones A (Priscon-A) is a rare tetrahydroanthraquinone isolated from herbal Prismatomeris connate. In this study, we examine its anti-tumour activity on human laryngocarcinoma HEp-2 cells in vitro. The CCK-8 assay was performed to evaluate its cytotoxicity. Cell cycle and apoptosis were analysed using flow cytometric analysis. Here, we showed Priscon-A inhibited the proliferation of HEp-2 cells in a dose-dependent manner, and at 5 μM it almost completely inhibited cell growth. Its cytotoxicity was associated with the cell cycle arrest at G2/M phase. The Annexin V-FITC/PI binding assay showed that the cell death induced by Priscon-A was associated with apoptosis. And, western blot analysis revealed that the levels of the apoptosis protein, cleaved caspase-3, PARP, p21 and Bax protein increased, while the level of anti-apoptosis protein Bcl-2 decreased.. These data demonstrated that Priscon-A significantly inhibited HEp-2 cell growth, induced the cell cycle arrest at the G2/M phase and efficiently induced cell apoptosis.  相似文献   

12.
An iridium(III) complex [Ir(ppy)2(MHPIP)]PF6 (ppy = 2-phenylpyridine, MHPIP = 2-(1-methyl-1H-pyrazol-3-yl)-1H-imidazo[4,5-f][1, 10]phenanthroline, Ir-1) was synthesized and characterized by elemental analysis, IR, 1H NMR and 13C NMR. The in vitro cytotoxic activities of the free proligand MHPIP and the complex Ir-1 against HepG2, A549, BEL-7402, SGC-7901 and normal LO2 cells were evaluated by the MTT method. MHPIP has no cytotoxic activity toward the selected cell lines, while Ir-1 shows a moderate cytotoxic effect against HepG2. This complex also displays no cytotoxicity against normal LO2 cells, with an IC50 of more than 200 µM. The apoptosis of HepG2 cells induced by the complex was studied with AO/EB and DAPI staining methods, which showed that the complex can effectively induce apoptosis. A comet assay was performed by gel electrophoresis, and the results further show that the complex can cause apoptosis. The level of reactive oxygen species, mitochondrial membrane potential, autophagy, intracellular Ca2+ levels and cell invasion were investigated by fluorescence microscopy, and the cell cycle arrest was studied by flow cytometry. The expression of caspase and Bcl-2 family proteins was investigated by western blot. The results of these experiments indicate that Ir-1 accumulates preferentially in the mitochondria of HepG2 cells and induces apoptosis through inhibition of the PI3K/AKT/mTOR pathway.  相似文献   

13.
14.
Cardiotoxin III (CTX III), a basic polypeptide with 60 amino acid residues isolated from Naja naja atra venom, has been reported to have anticancer activity. CTX III-induced K562 cell apoptosis was confirmed by DNA fragmentation (DNA ladder, sub-G1 formation) and phosphatidylserine (PS) externalization with an IC(50) value of 1.7 microg/ml at 48 h. A mechanistic analysis demonstrated that CTX III-induced apoptotic cell death was accompanied by up-regulation of both Bax and endonuclease G (Endo G), and downregulation of Bcl-X(L). CTX III had no effect on the levels of Bcl-2, Bid, XIAP survivin, and AIF proteins. CTX III treatment caused loss of the mitochondrial membrane potential (DeltaPsim), release of mitochondrial cytochrome c to the cytosol, and activation of both caspase-9 and -3. CTX III-induced apoptosis was significantly blocked by the broad-spectrum caspase inhibitor Z-VAD-FMK. However, CTX III did not generate reactive oxygen species (ROS) and antioxidants, including N-acetylcysteine and catalase, did not block CTX III-induced apoptosis in K562 cells. Modulation of Bax, Bcl-XL, and the Endo G proteins, release of mitochondrial cytochome c, and activation of caspase-3 and -9 all are involved in the CTX III-triggered apoptotic process in human leukemia K562 cells.  相似文献   

15.
To search novel therapy for human colon cancer, scutellarein identified from Scutellaria barbata was investigated using HCT116 cells. As a result, scutellarein can induce apoptosis of HCT116 cells. Further investigation for the mechanism has revealed scutellarein can increase the production of intracellular ROS and lead to the collapse of mitochondrial membrane potential. Meanwhile, the activity of caspase-3 in HCT116 cells was elevated by scutellarein. Moreover, down-regulated Bcl-2 and up-regulated Bax were observed. Additionaly, scutellarein resulted in cytochrome c release from mitochondria. These results indicated the apoptosis induction of HCT116 cells by scutellarein was implemented through ROS-mediated mitochondria-dependent pathway.  相似文献   

16.
The ruthenium(II) polypyridyl complexes [Ru(dmb)2(TCPI)](PF6)2 (1) and [Ru(ttbpy)2(TCPI)](PF6)2 (2) (dmb = 4,4′-dimethyl-2,2′-bipyridine, TCPI = 2-(3-(1H-1,3,7,8-tetraazacyclopenta[l]phenanthren-2-yl)phenyl)benzo[de]isoquinoline-1,3-dione, ttbpy = 4,4′-ditertiary butyl-2,2′-bipyridine) were synthesized and characterized. The in vitro cytotoxicities of the complexes were examined against a panel of cancer cell lines including SGC-7901, PC-12, HepG-2, SiHa, Eca-109, HeLa, Eca-9706, HOS and LO2 by 3-(4,5-dimethylthiazole)-2,5-diphenyltetrazolium bromide (MTT) method. Both complexes show higher activities against PC-12 cells, with IC50 values of 34.4 ± 1.3 and 26.8 ± 2.4 μM for 1 and 2, respectively. Cell apoptosis was assayed with acridine orange (AO) and ethidium bromide (EB) and annexin V/PI staining methods using fluorescence microscopy and flow cytometry. The reactive oxygen species, mitochondrial membrane potential and cell cycle distribution were assessed. Cell invasion was determined by Matrigel invasion assay, and the proteins associated with cell apoptosis were analyzed by western blot. The results suggest that the complexes induce the apoptosis of PC-12 cells through a ROS-mediated mitochondrial dysfunction pathway, accompanied by regulation of the expression of caspases and Bcl-2 family proteins.  相似文献   

17.
The aim of this study was to investigate the cytotoxic and apoptotic effects of Nephelium ramboutan-ake (pulasan) rind in selected human cancer cell lines. The crude ethanol extract and fractions (ethyl acetate and aqueous) of N. ramboutan-ake inhibited the growth of HT-29, HCT-116, MDA-MB-231, Ca Ski cells according to MTT assays. The N. ramboutan-ake aqueous fraction (NRAF) was found to exert the greatest cytotoxic effect against HT-29 in a dose-dependent manner. Evidence of apoptotic cell death was revealed by features such as chromatin condensation, nuclear fragmentation and apoptotic body formation. The result from a TUNEL assay strongly suggested that NRAF brings about DNA fragmentation in HT-29 cells. Phosphatidylserine (PS) externalization on the outer leaflet of plasma membranes was detected with annexin V-FITC/PI binding, confirming the early stage of apoptosis. The mitochondrial permeability transition is an important step in the induction of cellular apoptosis, and the results clearly suggested that NRAF led to collapse of mitochondrial transmembrane potential in HT-29 cells. This attenuation of mitochondrial membrane potential (Δψm) was accompanied by increased production of ROS and depletion of GSH, an increase of Bax protein expression, and induced-activation of caspase-3/7 and caspase-9. These combined results suggest that NRAF induces mitochondrial-mediated apoptosis.  相似文献   

18.
利用微流控芯片易于模拟体内生理环境、 流体控制精确及易于集成等优势, 将基于扩散原理的浓度梯度形成结构与经典的圣诞树形浓度梯度发生器相集成, 建立了在垂直和水平方向上形成连续、 双向浓度梯度的微流控芯片系统, 采用该系统对不同类型细胞(HEK-293, MCF-7, SGC-7901)的侵袭力进行了定量分析; 通过在垂直方向上施加血清浓度梯度, 在水平方向上施加抗肿瘤药物十字孢碱浓度梯度, 分析了在连续药物浓度作用下的人胃癌SGC-7901细胞侵袭能力被抑制的情况, 同时观察并定量评价了伴随细胞侵袭力变化过程中细胞增殖能力受抑制的情况. 研究结果表明, 该系统可形成稳定的双向物质浓度梯度; 在血清浓度梯度存在情况下, 伴随十字孢碱浓度梯度的升高, 肿瘤细胞侵袭(P<0.0001)和增殖能力(P<0.001)均呈现浓度依赖性的连续降低. 建立的双向浓度梯度微流控芯片系统可用于评价复杂环境对细胞的多重影响, 也为研究细胞间相互作用、 多种药物联用及药物筛选等提供了良好的研究平台.  相似文献   

19.
Tin oxide nanoparticles (SnO2 NPs) demonstrate potential anti-cancer functions. However, the anti-cancer mechanisms of SnO2 NPs have not been explored in detail. In the present study, we synthesized SnO2 NPs through laser ablation technique and examined their anticancer mechanisms and the probable involvement of the PI3K/AKT mediated pathways in human breast cancer cells (MCF-7) in vitro. The synthesized SnO2 NPs were characterized by transmission electron microcopy (TEM), dynamic light scattering (DLS), and Fourier-transform infrared spectroscopy (FTIR) techniques. Afterwards, the breast cancer cells were incubated with increasing concentrations of SnO2 NPs, and inhibition of cell proliferation was assessed by the viability assay. Furthermore, the quantification of reactive oxygen species (ROS) and apoptosis were examined by flow cytometry followed by superoxide dismutase (SOD) and catalase (CAT) activity as well as mitochondrial membrane potential assays. The expression levels of phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), mechanistic target of rapamycin (mTOR), B-cell lymphoma 2 (Bcl-2), and Bax were also assessed by western blot and quantitative real time PCR (qRT-PCR). It was shown that SnO2 NPs, 30 nm, with potential colloidal stability selectively prevented the proliferation of MCF-7 in comparison with MCF-10A cells and triggered ROS production, apoptosis, deactivation of SOD and CAT activity, and mitigation of mitochondrial membrane potential. Moreover, SnO2 NPs stimulated mitochondrial-mediated apoptosis pathway by overexpression of Bax/Bcl-2 and downregulation of p-PI3K/p-AKT/p-mTOR signaling pathway. This data elucidates the possible mechanisms by which SnO2 NPs may stimulate their anticancer effects.  相似文献   

20.
Betulinic acid (BA) is a naturally occurring pentacyclic triterpenoid and generally found in the bark of birch trees (Betula sp.). Although several studies have been reported that BA has diverse biological activities, including anti-tumor effects, the underlying anti-cancer mechanism in bladder cancer cells is still lacking. Therefore, this study aims to investigate the anti-proliferative effect of BA in human bladder cancer cell lines T-24, UMUC-3, and 5637, and identify the underlying mechanism. Our results showed that BA induced cell death in bladder cancer cells and that are accompanied by apoptosis, necrosis, and cell cycle arrest. Furthermore, BA decreased the expression of cell cycle regulators, such as cyclin B1, cyclin A, cyclin-dependent kinase (Cdk) 2, cell division cycle (Cdc) 2, and Cdc25c. In addition, BA-induced apoptosis was associated with mitochondrial dysfunction that is caused by loss of mitochondrial membrane potential, which led to the activation of mitochondrial-mediated intrinsic pathway. BA up-regulated the expression of Bcl-2-accociated X protein (Bax) and cleaved poly-ADP ribose polymerase (PARP), and subsequently activated caspase-3, -8, and -9. However, pre-treatment of pan-caspase inhibitor markedly suppressed BA-induced apoptosis. Meanwhile, BA did not affect the levels of intracellular reactive oxygen species (ROS), indicating BA-mediated apoptosis was ROS-independent. Furthermore, we found that BA suppressed the wound healing and invasion ability, and decreased the expression of Snail and Slug in T24 and 5637 cells, and matrix metalloproteinase (MMP)-9 in UMUC-3 cells. Taken together, this is the first study showing that BA suppresses the proliferation of human bladder cancer cells, which is due to induction of apoptosis, necrosis, and cell cycle arrest, and decrease of migration and invasion. Furthermore, BA-induced apoptosis is regulated by caspase-dependent and ROS-independent pathways, and these results provide the underlying anti-proliferative molecular mechanism of BA in human bladder cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号