首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Magnetic nanoparticles (MNPs) with a size of about 2 nm are prepared in nanoreactors of spherical polyelectrolyte brushes (SPBs) consisting of a solid polystyrene (PS) core and a shell of linear poly(acrylic acid) (PAA) chains densely grafted onto the core by one end. The synthesized MNP are strongly adhered to PAA chains due to the intense interaction of chemical coordination with the carboxyl groups. The generation of MNP in SPB layer is legibly revealed by small-angle X-ray scattering (SAXS) due to the significant increase in electron density. The radial distribution of MNP in SPB is built by fitting SAXS data. Most of MNP are found to locate nearby the surface of PS core. Compared to dynamic light scattering and transmission electron microscopy, SAXS can observe the generation and distribution of MNP in SPB as well as the changes upon changing pH and salt concentration in real time. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1681–1688  相似文献   

2.
The selective uptake of bovine serum albumin (BSA) and β-glucosidase (β-G) by annealed and quenched cationic spherical polyelectrolyte brushes (SPB) was systematically studied by combining turbidimetric titration, dynamic light scattering and small angle X-ray scattering (SAXS). These two kinds of SPB consist of a same polystyrene core and a dense shell of poly (2-aminoethyl methacrylate hydrochloride) (PAEMH) and poly [2-(methacryloyloxy) ethyl] trimethylammonium chloride (PMAETA), respectively. Results reveal that the adsorption/desorption of proteins on SPB can be easily controlled by changing external conditions (pH and ionic strength). For a particular annealed or quenched SPB, there is a significant difference of the interaction pH regions between the brush and the two proteins, and this difference can be tuned by ionic strength. At low ionic strength, quenched brushes were more suitable for selective adsorption of BSA and β-G, while annealed brushes performed better at high ionic strength. SAXS analysis demonstrated that volume exclusion effect played a remarkable role in protein uptake by both SPB, and larger proteins were more likely to be adsorbed on the outer layer of the brush. The unique core-shell structure and controllable chain types make SPB an excellent candidate in selective adsorption/separation of proteins of different sizes.  相似文献   

3.
郭旭虹 《高分子科学》2011,29(4):490-496
Bifunctional spherical polyelectrolyte brushes(SPBs)with tunable thermo-and pH-sensitivity are synthesized by combining thermo-controlled emulsion polymerization and photo-emulsion polymerization.They consist of a spherical polystyrene core and a shell of mixed brushes of poly(N-isopropylacrylamide)(PNIPAM)and poly(acrylic acid)(PAA) whose composition can be easily modulated by the dose of monomers.The kinetics of SPB synthesis as well as their size change with temperature and pH is determined by dynamic light scattering(DLS).The scanning electron microscopy(SEM) images show that the bifunctional SPBs have a defined spherical morphology with a narrow size distribution.  相似文献   

4.
We present an investigation of β-lactoglobulin adsorption onto spherical polyelectrolyte brushes (SPBs) by small angle X-ray scattering (SAXS). The SPB consists of a polystyrene core onto which long chains of poly(styrene sulfonate) are grafted. The amount and the distribution of proteins adsorbed in the brush layer at low ionic strength can be derived from SAXS. The analysis of the SAXS data reveals additionally that some of the protein molecules form aggregates of about six monomers in the adsorbed state. Furthermore, the position and the amount of slightly bound protein can be detected by the combination of the SAXS results and the SPB loading after extensive ultrafiltration. The total amount of adsorbed protein is compared to data derived from isothermal titration calorimetry. The comparison of both sets of data demonstrates that the protein molecules in the inner layers of the spherical polyelectrolyte brush are firmly bound. Proteins located in the outer layers are only weakly bound and can be washed out by prolonged ultrafiltration.  相似文献   

5.
王杰 《高分子科学》2014,32(4):432-438
Nano-sized spherical polymer brushes(SPBs) consisting of both a polystyrene(PS) core and a brush shell of poly(acrylic acid)(PAA), poly(N-acrylcysteamine)(PSH), or poly(N-acrylcysteamine-co-acrylic acid)(P(SH-co-AA)), were prepared by photo-emulsion polymerization. The core-shell structure was observed by dynamic light scattering and transmission electron microscopy. Due to the strengthened Donnan effect, the PAA brush can adsorb heavy metal ions. Effects of the contact time, thickness of PAA brush and pH value on the adsorption results were investigated. Due to the coordination between the mercapto groups and heavy metal ions as well as the electrostatic interactions, SPBs with mercapto groups are capable to remove heavy metal ions selectively from aqueous solutions. The order of adsorption capacity of the heavy metal ions by SPBs with mercapto groups is: Hg2+ ≈ Au3+ Pb2+ Cu2+ Ni2+. The adsorbed heavy metal ions can be eluted from SPB by aqueous HCl solution, and the SPBs can be recovered. After three regenerations the recovered SPBs still maintain their adsorption capacity.  相似文献   

6.
在内部分散超顺磁性Fe3O4纳米粒子的二乙烯苯交联聚丙烯酸微球表面引入原子转移自由基聚合(ATRP)引发剂,引发聚合向微球表面分别引入P(GMMA-r-DMAEMA-r-GMA)、P(GMMA-r-DMAEMA)和P(GMMA-r-GMA)无规共聚物刷(GMMA为甲基丙烯酸甘油单酯,DMAEMA为甲基丙烯酸-N,N-二甲氨基乙酯,GMA为甲基丙烯酸缩水甘油酯),聚合物刷中GMMA链节的作用是使聚合物刷具有亲水性,DMAEMA引入氨基,GMA引入环氧基.研究了青霉素G酰化酶在这些载体上的固定化和其酶活性.结果表明,同时引入环氧基和氨基的P(GMMA-r-DMAEMA-r-GMA)刷磁性微球固定化青霉素G酰化酶的活性和活性收率都最高,其固定化动力学比只含环氧基P(GMMA-r-GMA)刷磁性微球的好.固定化酶比自由酶更耐热,固定化酶的最佳pH值比自由酶的略高,固定化酶重复使用10次后其活性保留70%.  相似文献   

7.
Interactions among annealed spherical polyelectrolyte brushes (SPB) in concentrated aqueous dispersion under the effect of concentration, pH, and salt concentration are investigated by means of rheology, and small angle X‐ray scattering (SAXS). SPB consist of a solid polystyrene (PS) core and linear poly(acrylic acid) (PAA) chains densely grafted onto the core by one end. Rheological investigation demonstrates that the viscosity, the storage modulus G′ and the loss modulus G″ of SPB dispersion increase significantly upon increasing the SPB concentration and pH value which reflects the enhanced interactions among SPB. At high pH, a further increase in pH from 8 to 13 has almost no impact on the rheological properties and SAXS curves, while a “Uniform Shell Model” can fit the SAXS data very well probably due to the uniform filling of polyelectrolyte chains among SPB. When increasing the salt concentration from 10?5 to 10?3 M, the so‐called “polyelectrolyte peak” appears at middle to high q range in SAXS curves which means the overlapped polyelectrolyte chains are associated under the bridging effect of counterions, which disappears at higher salt concentration due to the screening effect of further added salts. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 405–413  相似文献   

8.
Carboxyl groups along poly(acrylic acid) (PAA) brushes attached to the surface of a gold-coated substrate served as the precursor moieties for the covalent immobilization of amino-functionalized biotin or bovine serum albumin (BSA) to form a sensing probe for streptavidin (SA) or anti-BSA detection, respectively. Surface-grafted PAA brushes were obtained by acid hydrolysis of poly(tert-butyl acrylate) brushes, formerly prepared by surface-initiated atom transfer radical polymerization of tert-butyl acrylate. As determined by surface plasmon resonance, the PAA brushes immobilized with functionalized biotin or BSA probes not only showed good binding with the designated target analytes but also maintained a high resistance to nonspecific protein adsorption, especially those PAA brushes with a high surface graft density. Although the probe binding capacity can be raised as a function of the graft density of the PAA brushes or the amount of carboxyl groups along the PAA chains, the accessibility of the target analyte to the immobilized probe was limited at the high graft density of the PAA brushes. The effect was far more apparent for the BSA-anti-BSA probe-analyte pair than for the much smaller biotin-SA probe-analyte pair. The impact of the swellability of the PAA brushes, as tailored by the degree of carboxyl group activation, on both the sensing probe immobilization and analyte detection was also addressed. This investigation demonstrated that PAA brushes having a defined graft density have a promising potential as a precursor layer for biosensing applications.  相似文献   

9.
High capacity, charge-selective protein uptake by polyelectrolyte brushes   总被引:2,自引:0,他引:2  
Surface plasmon resonance was used to measure binding of proteins from solution to poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) brushes end-grafted from gold surfaces by atom transfer radical polymerization (ATRP). PDMAEMA brushes were prepared with a variety of grafting densities and degrees of polymerization. These brushes displayed charge selective protein uptake. The extent of uptake for net negatively charged bovine serum albumin (BSA) scaled linearly with the surface mass concentration of grafted PDMAEMA, regardless of grafting density. BSA was bound at a constant ratio of 120 DMAEMA monomer units per protein molecule for all brushes examined. The equivalent three-dimensional concentration of BSA bound in the brush (i.e., the bound BSA surface excess concentration divided by the brush thickness) decreased monotonically with decreasing grafting density. The concentration of BSA bound within brushes prepared at higher grafting densities was comparable with the aqueous protein solubility limit. BSA desorption from the brush required changes in solution pH and/or ionic strength to eliminate its net electrostatic attraction to PDMAEMA. Net positively charged lysozyme was completely rejected by the PDMAEMA brushes.  相似文献   

10.
We consider the adsorption of bovine serum albumin (BSA) on spherical polyelectrolyte brushes (SPB). The SPB consist of a solid polystyrene core of 100nm diameter onto which linear polyelectrolyte chains (poly(acrylic acid), (PAA)) are grafted. The adsorption of BSA is studied at a pH of 6.1 at different concentrations of added salt and buffer (MES). We observe strong adsorption of BSA onto the SPB despite the effect that the particles as well as the dissolved BSA are charged negatively. The adsorption of BSA is strongest at low salt concentration and decreases drastically with increasing amounts of added salt. The adsorbed protein can be washed out again by raising the ionic strength. The various driving forces for the adsorption are discussed. It is demonstrated that the main driving force is located in the electrostatic interaction of the protein with the brush layer of the particles. All data show that the SPB present a new class of carrier particles whose interaction with proteins can be tuned in a well-defined manner.  相似文献   

11.
The spatial correlation of counterions [Li+, Na+, Rb+, Cs+, NH4+, (CH3)4N+] with spherical polyelectrolyte brushes (SPBs), which consist of a PS core and chemically grafted PSS chains, was comprehensively studied through a combination of SAXS, DLS, and Zeta potential. Results show that the SAXS intensity profiles of the brush appears to be “insensitive” to the concentration of Na+. By contrast, introducing salt ions with a density lower than sodium [NH4+, (CH3)4N+ and Li+] into the brush layer will cause a decrease in the scattering intensity while introducing those with a higher density than sodium (Rb+ and Cs+) will cause the opposite result. As verified by the combined results of SAXS, DLS, and Zeta potential, the collapse of the brush and the enrichment of the counterions in the brush layer occur simultaneously. It was further demonstrated that the concentration of counterions enriched in the innermost layer of the brush shell can be enhanced up to hundreds of times compared with the bulk concentration, and the counterion distribution in SPB shell follows a radial attenuation distribution. SAXS is confirmed to be powerful in probing the enrichment and distribution of counterions within SPB. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 738–747  相似文献   

12.
李莉  吕春祥 《高分子科学》2015,33(10):1421-1430
Spherical polyelectrolyte brushes(SPBs) consisting of polystyrene(PS) core and poly(2-aminoethyl methacrylate hydrochloride)(PAEMH) shell were prepared by photo-emulsion polymerization. Au nanoparticles(Au-NPs) with controlled size and size distribution were synthesized in situ using SPBs as nanoreactors. Via layer-by-layer deposition technique on the surface of SPBs, nano-composite particles with Au/Ag-NPs bilayer and Au/Ag/Au-NPs trilayer were prepared. The structures of the as-prepared Au/Ag multilayer SPBs were characterized by UV-Vis spectroscopy, TEM, ICP-AES and DLS. The charge reversal of the nano-composite particles observed by zeta potential confirmed the success of layer-by-layer assembly. The Au/Ag-NPs bilayer nano-composite particles showed high catalytic efficiency with an apparent activation energy of about 41.2 k J/mol in the reduction reaction of 4-nitrophenol to 4-aminophenol in the existence of sodium borohydride monitored. The catalytic activity of Au/Ag-NPs multilayer SPBs close to that of Au-NPs SPBs and much higher than that of Ag-NPs SPBs reveals its potential applications in cost-effective catalysts with high-performance.  相似文献   

13.
熊乐乐  李瑞军  季一兵 《色谱》2017,35(7):712-718
制备了粒径为15 nm的金纳米粒子(GNPs)并将其修饰到氨基衍生化的硅胶整体柱内,通过化学键合法将牛血清白蛋白(BSA)固载到GNPs的表面作为手性固定相。通过透射电子显微镜、扫描电子显微镜等方法进行表征,结果表明,GNPs分散性良好,并被成功地修饰到毛细管柱内,含量高达17.18%。优化了BSA手性柱的制备条件,最终确定了体积分数为10%的3-氨丙基三乙氧基硅烷(APTES)和15 g/L BSA为最佳反应条件。在毛细管电色谱分离模式下,对缓冲液pH值、电压等分离条件进行了考察,最终选择了10 mmol/L pH 7.4的磷酸缓冲液和15 kV运行电压作为最佳分离条件。手性柱对3种手性化合物(色氨酸、阿替洛尔和麻黄碱)有拆分效果,对色氨酸能实现基线分离。与物理吸附法相比,化学键合法制备的手性柱拆分效果好,分析物无需柱前衍生化,且色谱柱稳定性良好。该文的制备方法也为其他类型手性选择剂的引入提供了良好的思路。  相似文献   

14.
Narrow-disperse magnetic microspheres were prepared by alkaline coprecipitation of Fe2+ and Fe3+ ions within poly(acrylic acid–divinylbenzene) microspheres that were prepared by distillation–precipitation copolymerization. Magnetic microspheres with polymer brushes that contain epoxy groups were prepared by graft copolymerization of glycidyl methacrylate and glycerol monomethacrylate via atom transfer radical polymerization (ATRP) from the magnetic microsphere surfaces. Subsequently, magnetic microspheres with thiol-containing polymer brushes were prepared by treating the epoxy group-containing magnetic microspheres with sodium hydrosulfide. Gold nanoparticles were immobilized in the brush layer of the thiol-containing magnetic microspheres through Au–S coordination. The catalytic activity of the gold nanoparticle-immobilized magnetic microspheres was investigated using the reduction of 4-nitrophenol to 4-aminophenol with sodium borohydride as a model reaction. The catalyst could be reused for over 10 cycles without noticeable loss of catalytic activity.  相似文献   

15.
磁性壳聚糖微球对牛血清白蛋白的吸附性能   总被引:5,自引:0,他引:5  
在微乳液体系中, 以戊二醛为交联剂制备了磁性壳聚糖纳米粒子(Fe2O3-CS). 采用透射电子显微镜(TEM)、红外光谱(IR)、振动样品磁强计(VSM)等手段对纳米粒子进行表征. 结果表明, 纳米粒子的粒径在40 nm左右, 分散性良好, 具有较好的磁响应性能. 以碳二亚胺(EDC)为活化剂, 研究了Fe2O3-CS纳米粒子对牛血清白蛋白(BSA)分子的吸附性能, 并使用原子力显微镜(AFM)、紫外分光光度计(UV)进行表征. Fe2O3-CS粒子对BSA 的吸附大致符合Langmuir吸附模型, 298 K时饱和吸附量约为250 mg·g-1, 吸附常数为0.007 L·mg-1. 将BSA-粒子分散在不同pH的缓冲溶液中, 研究BSA-粒子复合物的稳定性. 用聚丙烯酰氨凝胶电泳(SDS-PAGE)对结果进行表征, 发现在碱性条件下BSA分子能从磁性粒子表面脱附下来.  相似文献   

16.
BSA adsorption onto bimodal PEO brushes at a solid surface was measured using optical reflectometry. Bimodal brushes consist of long (N=770) and short (N=48) PEO chains and were prepared on PS surfaces, applying mixtures of PS(29)-PEO(48) and PS(37)-PEO(770) block copolymers and using the Langmuir-Blodgett technique. Pi-A isotherms of (mixtures of) the block copolymers were measured to establish the brush regime. The isotherms of PS(29)-PEO(48) show hysteresis between compression and expansion cycles, indicating aggregation of the PS(29)-PEO(48) upon compression. Mixtures of PS(29)-PEO(48) and PS(37)-PEO(770) demonstrate a similar hysteresis effect, which eventually vanishes when the ratio of PS(37)-PEO(770) to PS(29)-PEO(48) is increased. The adsorption of BSA was determined at brushes for which the grafting density of the long PEO chains was varied, while the total grafting density was kept constant. BSA adsorption onto monomodal PEO(48) and PEO(770) brushes was determined for comparison. The BSA adsorption behavior of the bimodal brushes is similar to the adsorption of BSA at PEO(770) monomodal brushes. The maximum of BSA adsorption at low grafting density of PEO(770) can be explained by ternary adsorption, implying an attraction between BSA and PEO. The contribution of primary adsorption to the total adsorbed amount is negligible.  相似文献   

17.
借助溶热法制备了一种亲水及生物相容良好的Fe3O4磁性纳米粒子,用γ-氨丙基三乙氧基硅烷直接对所得磁性粒子表面改性,然后用戊二醛偶联法制得了固定化猪胰脂肪酶.表征研究显示,所得磁性粒子粒径约200 nm,具有良好的单分散性和磁响应性.考察了戊二醛浓度、给酶量和反应时间对脂肪酶固定化过程的影响,并通过游离酶与固定化酶的比...  相似文献   

18.
Small-angle X-ray scattering (SAXS) and electron paramagnetic resonance (EPR) have been carried out to investigate the structure of the self-aggregates of two phenothiazine drugs, chlorpromazine (CPZ) and trifluoperazine (TFP), in aqueous solution. In the SAXS studies, drug solutions of 20 and 60 mM, at pH 4.0 and 7.0, were investigated and the best data fittings were achieved assuming several different particle form factors with a homogeneous electron density distribution in respect to the water environment. Because of the limitation of scattering intensity in the q range above 0.15 A(-1), precise determination of the aggregate shape was not possible and all of the tested models for ellipsoids, cylinders, or parallelepipeds fitted the experimental data equally well. The SAXS data allows inferring, however, that CPZ molecules might self-assemble in a basis set of an orthorhombic cell, remaining as nanocrystallites in solution. Such nanocrystals are composed of a small number of unit cells (up to 10, in c-direction), with CPZ aggregation numbers of 60-80. EPR spectra of 5- and 16-doxyl stearic acids bound to the aggregates were analyzed through simulation, and the dynamic and magnetic parameters were obtained. The phenothiazine concentration in EPR experiments was in the range of 5-60 mM. Critical aggregation concentration of TFP is lower than that for CPZ, consistent with a higher hydrophobicity of TFP. At acidic pH 4.0 a significant residual motion of the nitroxide relative to the aggregate is observed, and the EPR spectra and corresponding parameters are similar to those reported for aqueous surfactant micelles. However, at pH 6.5 a significant motional restriction is observed, and the nitroxide rotational correlation times correlate very well with those estimated for the whole aggregated particle from SAXS data. This implies that the aggregate is densely packed at this pH and that the nitroxide is tightly bound to it producing a strongly immobilized EPR spectrum. Besides that, at pH 6.5 the differences in motional restriction observed between 5- and 16-DSA are small, which is different from that observed for aqueous surfactant micelles.  相似文献   

19.
Recent experiments showed significant adsorption of bovine serum albumin (BSA) in spherical polyelectrolyte brushes (SPB) consisting of polyacrylic acid, even for pH values above the isoelectric point of the protein, when both protein and polyion are negatively charged. To describe these experimental findings theoretically, we have constructed a spherical box model for an annealed brush consisting of a weak polyelectrolyte that includes the adsorption of BSA. At equilibrium the chemical potential of BSA in solution equals that at each location in the brush, while the net force on the polyions (including osmotic, stretching, and excluded volume terms) is zero at each location. Protein adsorption is predicted above the isoelectric point and--in agreement with experimental data--is a strong function of ionic strength and pH. Adsorption of protein in the brush is possible because the pH in the brush is below the isoelectric point and protein reverses its charge from negative to positive when it adsorbs.  相似文献   

20.
The magnetic separation technique based on magnetic iron oxide nanoparticles (MNPs) has potential applications in protein adsorption and purification, enzyme immobilization, cell sorting, nucleic acid detachment, and drug release. However, the naked MNPs are often insufficient for their hydrophilicity, colloidal stability, and further functionalization. To overcome these limitations, chitosan was firstly carboxymethylated and then covalently conjugated on the surface of the MNPs ranging in size from about 5 to 15 nm, which were prepared by co-precipitating iron (II) and iron (III) in alkaline solution and then treating under hydrothermal conditions. It was found that such modification did not result in the phase change of the MNPs, and the resultant modified nanoparticles were still superparamagnetic. In particular, the colloidal stability of MNPs in aqueous suspension was improved after the surface modification. By investigating the adsorption of bovine serum albumin (BSA) on the modified MNPs, it was observed that the adsorption capacity of the BSA on the modified MNPs increased rapidly within several minutes and then reached the maximum value at about 10 min. The adsorption equilibrium isotherm could be fitted well by the Langmuir model. The medium pH affected greatly the adsorption of the BSA. The maximum adsorption of the BSA occurred at the pH value close to the isoelectric point of the BSA, with a saturation adsorption amount of 94.45 mg/g (25 °C). For the BSA feed concentration of 1.017 mg/ml, a high desorption percentage of 91.5% could be achieved under an alkaline condition (pH 9.4).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号