首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
张军旗  杨永进  张劲松  刘强 《化学学报》2002,60(11):1973-1980
采用脉冲微波强化丝光等离子体反应装置,研究了甲烷氧化偶联与二氧化碳重 整制合成气(CO+H_2)副产乙炔、乙烯的反应。常压下,当CH_4和CO_2流量分别为 120,80mL/min,微波峰值功率120W,脉冲通断比为100/100ms时,CH_4和CO_2转化 率分别为70.8%,68.8%;CO, C_2H_2,C_2H_4选择性分别为75%,17.8%和4.1%,产物 中没有积炭。H_2/CO摩尔比值随原料气中甲烷比例的增加而增大,当CH_4/CO_2摩 尔比为2:1时,H_2/CO摩尔比达到2,这种比例的合成气能方便地用于下一步的 Fischer-Tropsch反应和其他化学品的合成。与其他等离子体反应相比,采用脉冲 强化常规丝光等离子体进行CH_4脱氢偶联与CO_2重整反应,能量效率明显提高,这 对于促进微波等离子体技术在C1化学中的应用具有重要的意义。  相似文献   

2.
采用刀片式不锈钢电极放电反应器,以Ar气为稀释气,研究了等离子体作用下甲烷转化制C2烃的工艺条件。考察了CH4流量、高频电源输入电压和电极间距等参数对甲烷转化率、C2烃选择性、收率和反应表观能耗的影响。结果表明,增加CH4流量,表观能耗随之降低;当输入电压和电极间距较小时,甲烷转化率随输入电压和电极间距的增大而增大,但输入电压和电极间距过大时,C2烃收率明显下降,积碳严重。在CH4流量14 mL/min、Ar气流量60 mL/min、高频电源输入电压22 V、电流0.44 A、电极间距4 mm的优化条件下,甲烷最高转化率为43.1%,C2烃收率、选择性和表观能耗分别为40.1%、93.2%和2.41 MJ/mol。C2烃中不饱和烃的体积分数可达95%以上。  相似文献   

3.
对常温常压下滑动弧放电等离子体直接分解甲醇进行了研究,探讨了载气流量、甲醇浓度、电极间距、输入电压和气化室温度等实验参数的影响。结果表明,不同操作条件导致甲醇转化率由51%升高到81.7%,氢气和一氧化碳的选择性之比基本保持一个固定值。除了氢气和一氧化碳,产物中还检测到了少量的甲烷和C2不饱和烃以及痕量二氧化碳。不同于传统的甲醇热分解机理,提出了滑动弧放电等离子体甲醇分解的制氢路径。  相似文献   

4.
在自制的介质阻挡放电等离子体重整制氢装置上进行了甲烷部分氧化重整制氢的实验研究. 本文研究了氧碳(O/C)摩尔比, 进气流量, 放电间隙, 放电区间长度, 填充物的直径、形状和材料, 放电电压和放电频率对甲烷转化率、氢产率和产物的选择性(H2、CO和CO2)的影响. 实验结果表明: 放电区域的参数对甲烷转化率有较大的影响. 甲烷转化率随着放电区域长度的增大而增大, 当放电区域长度从5 cm增大到20 cm时, 甲烷转化率从6.87%增大到22.26%, 增大率为224%. 同时, 放电区域的填充物对产氢效果有较大的影响. 当反应器填充颗粒时, 甲烷转化率比无填充物时高. 选择适当介电常数的填充物具有巨大的实际工程意义. 另外, 氢产率和氢气的选择性随着放电频率的增大而增大, 当放电频率从1.5 kHz 增大到7.0 kHz 时, 氢产率从1.10%增大到9.49%, 氢气的选择性从21.18%增大到30.06%. 实验结果将对碳氢燃料等离子体重整制氢的车载应用提供实验依据.  相似文献   

5.
介质阻挡放电等离子体催化天然气偶联制C2   总被引:1,自引:0,他引:1       下载免费PDF全文
在常压、室温的介质阻挡放电连续流动反应器中, 对介质阻挡放电等离子体作用下天然气偶联反应制C2烃进行了研究. 考察了放电频率、放电的电极结构、放电电压、放电的电极数目、氢气、甲烷进料流量和催化剂等参数对甲烷转化率和产物(碳二烃和碳三烃)的选择性影响规律, 同时探讨了反应过程. 结果表明合适的工艺条件为: 电源频率20 kHz, 电极结构为两个电极上都覆盖绝缘介质的b型, 放电电压20~40 kV, 进料流量20~60 mL·min-1, H2/CH4为1/4; 甲烷的转化率随电压的升高而增大, 随甲烷进料流量的增大而减小, 碳二烃的选择性随电压的升高而减小, 随甲烷进料流量的增大而增大. 甲烷的转化率可达45%, 碳二烃选择性可达76%, 产品(碳二烃和碳三烃)的总选择性接近100%; 连续反应100 h无积碳; 催化剂可改善产品碳二烃的选择性; 碳二烃和碳三烃的生成主要是通过自由基和甲烷分子反应获得的.  相似文献   

6.
利用脉冲微波强化、扩展丝光等离子体反应装置,在常压和正压条件下,对低温脉冲微波等离子体裂解甲烷和氢气混合气制C2烃的反应进行了研究。考察了压力、微波功率、脉冲通/断时间以及氢气/甲烷比例、流量等参数对反应的影响。结果表明,在脉冲微波的作用下,常规高压放电形成的在空间呈非连续分布的丝状等离子体被强化和扩展成为连续分布的伞状等离子体,等离子体利用率和活性均得以大幅度提高;利用这种低温等离子体可以获得高的甲烷转化率,而且产物纯净,只有乙烯和乙炔;通过改变压力,还可能调节产物中C2H2/C2H4的物质的量比值,当气体总流量为300mL/min、物质的量比n(H2)/n(CH4)=2:1、压力为0.13MPa、微波峰值功率为120W、脉冲通/断比=400/400ms时,甲烷转化率可达59.2%,C2烃单程收率可达52%,其中乙炔单程收率达42.7%。  相似文献   

7.
构建了CH_4-O_2-N_2-H_2O反应体系,对介质阻挡放电条件下甲烷水蒸气重整和部分氧化制氢反应过程进行了研究,考察了H2O/CH4物质的量比、O_2/N_2物质的量比、气体总流量、放电电压及放电频率等参数对制氢效率的影响,并基于发射光谱原位诊断法分析了反应机理。结果表明,甲烷转化率和氢气产率随着H_2O/CH_4物质的量比、O_2/N_2物质的量比和放电电压的增加而增加,而随着反应气体总流量的增加而减小,随着放电频率的增加先增大后减小,在9.8 kHz处取得最大值。在H_2O/CH_4物质的量比1.82、O_2/N_2物质的量比2.1、总流量136 mL/min、放电电压18.6 kV及放电频率9.8 kHz的条件下,甲烷转化率与氢气产率分别达47.45%和21.33%。甲烷和水蒸气等反应物分子通过电子解离产生CH_x·、H·、OH·、O·等自由基,进而通过自由基间的碰撞反应生成H_2;H·自由基一方面来源于CH_4的电子解离;另一方面来源于水蒸气一次解离以及OH·的进一步离解。部分氧化反应主要表现为O_2电子解离形成的O·自由基以及水蒸气一次反应产物OH·自由基进一步离解形成的O·自由基对CH_2·自由基的氧化。  相似文献   

8.
在常压下, 研究了添加气的种类(N2, He, Ar, H2, NH3, CO和CO2)对介质阻挡放电低碳烷烃(甲烷、 乙烷和丙烷)转化制低碳烯烃的影响. 结果表明, 以甲烷或乙烷为原料时, N2, He, Ar和CO的引入有利于提高原料的转化率和总烯烃的选择性; 而CO2, H2和NH3的引入对甲烷、 乙烷的转化率无明显影响, 但H2和NH3的引入会使总烯烃的选择性显著降低. 以丙烷为原料时, 所研究的添加气均可提高丙烷的转化率, 而只有CO的引入可提高总烯烃选择性. 综上所述, 80%(摩尔分数) CO添加量最有利于低碳烷烃转化成低碳烯烃, 对应的甲烷、 乙烷和丙烷的转化率分别提高了14.4%, 17.6%和42.8%, 总烯烃的选择性分别提高了19.9%, 25.0%和11.9%. 以CH4为例, 通过对放电电流波形和等离子体区物种的发射光谱(OES)研究发现, 引入CO能显著增加等离子体的电子密度, 并且体系中出现激发态O*物种(777.5和844.7 nm), 这种O*物种能够促进C-H键的断裂, 有利于烯烃的生成. 因此, 等离子体区电子密度的增加和激发态O*物种的出现可能是CH4-CO体系中CH4有效转化的主要原因.  相似文献   

9.
本文利用等离子体耦合催化剂的方式进行CH_4干重整(Dry Reforming of Methane,DRM),重点考察了反应温度、CO_2/CH_4物质的量比、合成气主要气体组分浓度(N_2、H_2、CO、H_2O)对CH_4转化率及等离子体催化能量效率的影响。结果表明,以La-Ni/γ-Al_2O_3为催化剂,当反应温度450℃,CO_2/CH_4物质的量比为1.0时,CH_4转化率为41.57%;提高CO_2/CH_4物质的量比可提高CH_4转化率,当CO_2/CH_4物质的量比为5.0时,等离子体催化CH_4干重整过程的CH_4转化率可达92.82%。温度和CO_2/CH_4物质的量比对CH_4转化率影响显著,气体组分的变化改变了体系中的激发态粒子,不仅直接影响到CH_4转化率,还影响着催化剂表面积炭。向反应体系中添加N_2、H_2O可提高CH4转化率,并抑制积炭;而添加H_2、CO后CH_4转化率显著降低。研究结果可望为生物质气化合成化工品的工艺开发提供基础数据和参考依据。  相似文献   

10.
采用固相反应法制备了具有尖晶石结构的LiMn_2O_4/TiO_2系列催化剂,探讨了TiO_2、Li/TiO_2、Mn/TiO_2、LiMn_2O_4及LiMn_2O_4/TiO_2等不同组成催化剂的甲烷氧化偶联反应性能,采用XRD、XPS、CO_2-TPD和H_2-TPR等表征方法对该系列催化剂进行了分析。结果表明,具有尖晶石结构的LiMn_2O_4化合物具有较高的甲烷氧化偶联催化活性,在775℃、0.1MPa、7200mL/(h·g),CH_4∶O_2(体积比)为2.5的条件下,甲烷转化率可达25.8%,C2选择性可达43.2%。TiO_2的存在不仅进一步提高了甲烷转化率和C2选择性,还有效抑制了甲烷完全氧化形成CO_2的过程。负载8%LiMn_2O_4的LiMn_2O_4/TiO_2催化剂性能达到最优,此时甲烷转化率达到31.6%,C2选择性为52.4%,CO_2选择性降低到26.3%。考察了不同焙烧温度对催化剂活性的影响,850℃为LiMn_2O_4/TiO_2催化剂的最佳焙烧温度。  相似文献   

11.
采用大气压等离子体射流,以CH4和CO2直接作为放电气体进行常压下重整制合成气的实验研究,考察了等离子体射流的放电特征及放电距离、放电功率、原料气配比和流量对反应的影响。结果表明,该等离子体具有放电稳定、均匀的特征。重整反应的主要产物为合成气,只有少量的H2O和积炭生成。优化的反应条件为放电距离为9mm,CH4和CO2的摩尔比为4/6。当原料气流量为1000mL/min,放电功率为88.4W时,CH4和CO2的最高转化率为分别为94.99%和87.23%。甲烷和二氧化碳的转化率随放电功率的增加而增加,随流量的增加而减少。  相似文献   

12.
Ni/TiO2 catalyst was firstly used for the partial oxidation of methane to produce synthesis gas. The reaction was carried out in a fixed-bed continuous flow quartz reactor at atmospheric pressure. The flow rate was regulated by a mass controller with a space velocity of 1.5×105 h-1 and a CH4/O2 molar ratio of 2/1. Prior to the introduction of feed gas, the Ni/TiO2 catalyst was activated in flowing H2 at 700℃ for 30 min. TiO2 is known to be a poor support for partial oxidation because which can easily result in complete oxidation. But at 700℃, Ni/TiO2 catalyst exhibited a better performance than Ni/SiO2 and Ni/ZrO2. The conversion of methane was 81.5, and the selectivity of hydrogen and carbon monoxide were 93.4 and 89.4 respectively. After 6h of continuous reaction, the conversion of methane descended a little and then remained a steady yield on the whole,but the selectivity of H2 and CO gradually declined, as far as to a constant. The selectivity of H2 was always higher than that of CO and the ratio of H2/CO wouldn't change with the increasing of reaction time.  相似文献   

13.
为探讨固体氧化物燃料电池(solid oxide fuel cell, SOFC)中干甲烷浓度对反应的影响,采用色谱在线测量阳极尾气,总结阳极尾气的变化规律。在此基础上,分析干甲烷在固体氧化物燃料电池Ni-YSZ阳极上的反应,寻找干甲烷浓度与电流对电池阳极反应影响的数学关系。结果表明,随着电流密度的增加,低浓度甲烷按顺序发生CH4+O2- → CO+2H2+2e-、CH4+2O2- → CO+H2O+H2 +4e-、CH4+3O2- → CO+2H2O + 6e-、CH4+4O2- → CO2+2H2O+8e-反应,高浓度甲烷只发生甲烷的第一个氧化反应,中浓度甲烷发生前两个或前三个反应。依据法拉第第一定律及反应物之间的关系,确定甲烷的低、中、高浓度的判定依据分别为:qv(CH4)≤I/(4F)、I/(4F)≤qv(CH4)≤I/(2F)、qv(CH4)≥I/(2F)。  相似文献   

14.
Currently, worldwide attention is focused on controlling the continually increasing emissions of greenhouse gases, especially carbon dioxide. To this end, a number of investigations have been carried out to convert the carbon dioxide molecules into value-added chemicals. As carbon dioxide is thermodynamically stable, it is necessary to develop an efficient carbon dioxide utilization method for future scaled-up applications. Recently, several approaches, such as electrocatalysis, thermolysis, and non-thermal plasma, have been utilized to achieve carbon dioxide conversion. Among them, non-thermal plasma, which contains chemically active species such as high-energy electrons, ions, atoms, and excited gas molecules, has the potential to achieve high energy efficiency without catalysts near room temperature. Here, we used radio-frequency (RF) discharge plasma, which exhibits the non-thermal feature, to explore the decomposition behavior of carbon dioxide in non-thermal plasma. We studied the ionization and decomposition behaviors of CO2 and CO2-H2 mixtures in plasma at low gas pressure. The non-thermal plasma was realized by our custom-made inductively coupled RF plasma research system. The reaction products were analyzed by on-line quadrupole mass spectrometry (differentially pumped), while the plasma status was monitored using an in situ real-time optical emission spectrometer. Plasma parameters (such as the electron temperature and ion density), which can be tuned by utilizing different discharge conditions, played significant roles in the carbon dioxide dissociation process in non-thermal plasma. In this study, the conversion ratio and energy efficiency of pure carbon dioxide plasma were investigated at different values of power supply and gas flow. Subsequently, the effect of H2 on CO2 decomposition was studied with varying H2 contents. Results showed that the carbon dioxide molecules were rapidly ionized and partially decomposed into CO and oxygen in the RF field. With increasing RF power, the conversion ratio of carbon dioxide increased, while the energy efficiency decreased. A maximum conversion ratio of 77.6% was achieved. It was found that the addition of hydrogen could substantially reduce the time required to attain the equilibrium of the carbon dioxide decomposition reaction. With increasing H2 content, the conversion ratio of CO2 decreased initially and then increased. The ionization state of H2 and the consumption of oxygen owing to CO2 decomposition were the main reasons for the V-shape plot of the CO2 conversion ratio. In summary, this study investigates the influence of power supply, feed gas flow, and added hydrogen gas content, on the carbon dioxide decomposition behavior in non-thermal RF discharge plasma.  相似文献   

15.
The performance of the Ni-Co bimetallic catalyst was significantly improved by a novel H2 and CO2 (HCD) pretreatment in the dry reforming of methane compared with traditional H2 pretreatment. The effects of the HCD pretreatment operating conditions, such as pretreatment time, temperature, gas feeding ratio, and gas flow rate, on the catalytic performance of Ni-Co bimetallic catalyst were investigated. The optimal pretreatment time, temperature, gas feeding ratio (CH4/CO2), and gas flow rate were 0.5-1 h, 780-800 ℃, 0:10, and 175-200 mL·min-1, respectively. Biogas was simulated with CH4 and CO2 in a volume ratio of 1 and without any other diluted gas. The catalyst was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and thermogravimetry (TG) coupled to differential scanning calorimetry (DSC). In a 511 h stability test under the optimized operating conditions, the catalyst pretreated with both H2 and CO2 exhibited excellent stability. The average conversions of CH4 and CO2, selectivities for H2 and CO, and volume ratio of H2/CO were 96%, 97%, 98%, 99%, and 0.98, respectively. The average carbon deposition rate over the Ni-Co bimetallic catalyst was only about 0.2 mg·g-1·h-1. The characterization results revealed that the sintering speed of the metal greatly decreased with testing time, and the metal particle will not greatly sinter with further testing time. The amount of deposited carbon on the catalyst gradually decreased and growth of filamentous carbon over the surface of the catalyst could be inhibited. The performance of the Ni-Co bimetallic catalyst was significantly improved by a novel H2 and CO2 (HCD) pretreatment in the dry reforming of methane compared with traditional H2 pretreatment. The effects of the HCD pretreatment operating conditions, such as pretreatment time, temperature, gas feeding ratio, and gas flow rate, on the catalytic performance of Ni-Co bimetallic catalyst were investigated. The optimal pretreatment time, temperature, gas feeding ratio (CH4/CO2), and gas flow rate were 0.5-1 h, 780-800 ℃, 0:10, and 175-200 mL·min-1, respectively. Biogas was simulated with CH4 and CO2 in a volume ratio of 1 and without any other diluted gas. The catalyst was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and thermogravimetry (TG) coupled to differential scanning calorimetry (DSC). In a 511 h stability test under the optimized operating conditions, the catalyst pretreated with both H2 and CO2 exhibited excellent stability. The average conversions of CH4 and CO2, selectivities for H2 and CO, and volume ratio of H2/CO were 96%, 97%, 98%, 99%, and 0.98, respectively. The average carbon deposition rate over the Ni-Co bimetallic catalyst was only about 0.2 mg·g-1·h-1. The characterization results revealed that the sintering speed of the metal greatly decreased with testing time, and the metal particle will not greatly sinter with further testing time. The amount of deposited carbon on the catalyst gradually decreased and growth of filamentous carbon over the surface of the catalyst could be inhibited. Thereby, great catalytic activity and stability could be obtained during the dry reforming of methane reaction.  相似文献   

16.
以Al2O3为惰性载体,利用共沉淀法制备了CeO2-Fe2O3-Al2O3复合载氧体,并对载氧体进行了XRD、SEM表征。在固定床反应器中,考察了程序升温、恒温、多循环等操作条件下,载氧体对甲烷部分氧化重整的反应性能。程序升温实验结果表明,在相同温度下,CeO2含量为30%的载氧体与不含CeO2的载氧体对比,CH4转化率、H2和CO选择性均提高。在恒温实验中,含有CeO2的两种载氧体,CH4转化率、H2和CO选择性上也都明显高于不含CeO2的载氧体,当反应时间小于1 200 s时,无积炭发生。三种载氧体经过15次循环后,CeO2含量为30%的载氧体表现出最佳的循环特性。多循环实验中,当反应温度850 ℃、反应时间945 s时,CH4最大转化率达到91.53%、H2的最大选择性达到86.36%、CO的最大选择性达到85.12%、H2与CO的最佳平均物质的量比为2.03。XRD谱图显示,经过多次循环后,三种载氧体的物相没有发生变化,载氧体表现出了很好的稳定性能。  相似文献   

17.
Aseries of Ni-W catalysts supported on mesoporous SBA-15 with different Ni:W ratios(NixW/SBA-15, Ni-5%, x=1,10,50) was prepared and fully characterized by powder X-ray diffraction(PXRD), Brunner-Emmet-Teller(BET), transmission electronic microscopy(TEM), H2-temperature programmed reduction(H2-TPR), and X-ray photoelectron spectroscopy(XPS). High-resolution TEM images, XPS measurements, H2-TPR experiments coupled with PXRD results determined the evolution of Ni and W species. It is found that a trace amount of W from H2WO4 can significantly improve Ni dispersion on SBA-15 (Ni50W/SBA-15) with Ni0 andnon-stoichiometric WOx species as small as ca. 3.6 nm. The prepared NixW/SBA-15 was utilized for CO2 hydrogenation, which showed that a higher W content restrained the CO2 hydrogenation while a lower W ratio promoted both conversion rate and selectivity for methane compared with Ni/SBA-15. The Ni50W/SBA-15 catalyst showed the best performance with a 93.3% CO2 conversion rate and 99.7% selectivity for methane at 400 oC under 0.1 MPa and maintained ca. 97% initial performance for 24 h. Tracking product evolution experiments by in-situ Fourier transform infrared spectrascopy(FTIR) indicated that a small amount of W can modify the surface of Ni particles by geometric coverage and electronic modification, which facilitates the adsorption of the CO intermedia and results in the formation of CH4. This work provides a new clue to fabricating efficient CO2 conversion bimetallic materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号