首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Temperature-dependent gas-phase reaction kinetics measurements and equilibrium thermodynamics under multicollision conditions in conjunction with ab initio DFT calculations were employed to determine the binding energies of carbon monoxide to triatomic silver-gold binary cluster cations and anions. The binding energies of the first CO molecule to the trimer clusters increase with increasing gold content and with changing charge from negative to positive. Thus, the reactivity of the binary clusters can be sensitively tuned by varying charge state and composition. Also, multiple CO adsorption on the clusters was investigated. The maximum number of adsorbed CO molecules was found to strongly depend on cluster charge and composition as well. Most interestingly, the cationic carbonyl complex Au(3)(CO)(4)(+) is formed at cryogenic temperature, whereas for the anion, only two CO molecules are adsorbed, leading to Au(3)(CO)(2)(-). All other trimer clusters adsorb three CO molecules in the case of the cations and are completely inert to CO in our experiment in the case of the anions.  相似文献   

2.
We have measured the photoelectron spectra of the multiple-decker 1:1 sandwich clusters of Eu(n)(COT)n- (n = 1-4; COT = 1,3,5,7-cyclooctatetraene), synthesized in the gas phase, and studied theoretically the bonding scheme, charge distribution, valence orbital energies, and photodetachment energies. We calculated the ground electronic state X- and the first excited electronic state A-, both of which have strong ionic bonding and a characteristic charge distribution. Moreover, we found that the valence orbital energies of Eu (6s) and COT (L delta) depend strongly on cluster size and their positions in the clusters. With the calculated vertical detachment energies for these valence orbitals, we assigned the peaks in the experimental photoelectron spectra and analyzed the origin of their interesting behavior by employing simple point charge models. From these analyses, it became clear that the characteristic behavior of the spectra is due to the strong ionic bonding and the charge distribution. In addition, using the point charge models, we estimated the vertical detachment energies of the one-dimensional polymer [Eu(COT)]infinity-.  相似文献   

3.
We present optical absorption spectra in the UV-visible range (1.6 eV < ?ω < 5.5 eV) of mass selected neutral copper clusters Cu(n)(n = 1-9) embedded in a solid neon matrix at 7 K. The atom and the dimer have already been measured in neon matrices, while the absorption spectra for sizes between Cu(3) and Cu(9) are entirely (n = 6-9) or in great part new. They show a higher complexity and a larger number of transitions distributed over the whole energy range compared to similar sizes of silver clusters. The experimental spectra are compared to the time dependent density functional theory (TD-DFT) implemented in the TURBOMOLE package. The analysis indicates that for energies larger than 3 eV the transitions are mainly issued from d-type states; however, the TD-DFT scheme does not reproduce well the detailed structure of the absorption spectra. Below 3 eV the agreement for transitions issued from s-type states is better.  相似文献   

4.
Ab initio and Density Functional Theory (DFT) calculations have been carried out for zinc-water clusters Zn(n)-(H2O)(m) (n = 1-32 and m = 1-3, where n and m are the numbers of zinc atoms and water molecules, respectively) to elucidate the structure and electronic states of the clusters and the interaction of zinc cluster with water molecules. The binding energies of H2O to zinc clusters were small at n = 2-3 (2.3-4.2 kcal mol(-1)), whereas the energy increased significantly in n = 4 (9.0 kcal mol(-1)). Also, the binding nature of H2O was changed at n = 4. The cluster size dependency of the binding energy of H2O accorded well with that of the natural population of electrons in the 4p orbital of the zinc atom. In the larger clusters (n > 20), it was found that the zinc atoms in surface regions of the zinc cluster have a positive charge, whereas those in the interior region have a negative charge with the large electron population in the 4p orbital. The interaction of H2O with the zinc clusters were discussed on the basis of the theoretical results.  相似文献   

5.
The chemical bond formation in oxygen-rich Si(n)O(m) clusters was investigated by sampling the potential energy surface of the model systems SiO + SiO(2) → Si(2)O(3) and (SiO)(2) + SiO(2) → Si(3)O(4) along a two-dimensional reaction coordinate, by density functional theory calculations. Evidence for crossing between the weakly bound neutral-neutral (SiO)(n) + SiO(2) and the highly attractive ion-pair (SiO)(n)(+) + SiO(2)(-) surfaces was found. Analysis of frontier molecular orbitals and charge distribution showed that surface crossing involves transfer of valence electron charge from (SiO)(2) to SiO(2). The sum of the natural atomic charges over the (SiO)(n) and (SiO(2)) groups of the Si(n)O(m) cluster products, gave a net positive charge on the (SiO)(n) "core" and a net negative charge on the (SiO(2)) groups. This is interpreted as the "ion-pair memory" left on the Si(n)O(m) products by the charge-transfer mechanism and may provide a way to assess the role of charge-transfer processes in the assembly of larger Si(n)O(m) neutral clusters.  相似文献   

6.
利用密度泛函理论, 得到了ZrnB(n=1-13)团簇的基态结构, 计算并讨论了团簇能量的二阶差分和离解能. 结果表明, n=2, 5, 12时, 相应团簇较稳定, 特别是Zr5B团簇的稳定性最高. 同时分析了ZrnB团簇的电子性质及磁性, 结果显示能隙随n值的增大出现奇偶振荡趋势, 特别是Zr12B团簇的能隙只有0.015 eV, 表明该团簇已具有金属性. 电荷转移随n值增大, 整体呈增大趋势, 除了二聚体ZrB, 电荷由B原子转移到Zr原子. 利用Mulliken布居分析得到二聚体ZrB(5.000 μB)和团簇Zr4B(3.000 μB)的磁矩较大, ZrnB团簇中总磁矩主要来自Zr原子的4d轨道.  相似文献   

7.
The electron binding energies and relaxation dynamics of water cluster anions (H(2)O)(n)(-) (11 ≤ n ≤ 80) formed in co-expansions with neon were investigated using one-photon and time-resolved photoelectron imaging. Unlike previous experiments with argon, water cluster anions exhibit only one isomer class, the tightly bound isomer I with approximately the same binding energy as clusters formed in argon. This result, along with a decrease in the internal conversion lifetime of excited (H(2)O)(n)(-) (25 ≤ n ≤ 40), indicates that clusters are vibrationally warmer when formed in neon. Over the ranges studied, the vertical detachment energies and lifetimes appear to converge to previously reported values.  相似文献   

8.
The results of all-electron density functional calculations on the bimetallic cluster compounds [M(4){Fe(CO)(4)}(4)](4-) (M = Cu, Ag, Au) and on the corresponding naked species M(4)Fe(4) are reported. The trends within the triad have been investigated. The bare metal clusters exhibit a strong magnetization which is quenched on addition of CO ligands. The bonding in the bare clusters is different for the silver derivative compared to that of copper and gold, resulting in comparatively weaker Ag-Fe and Ag-Ag bonds. This can be rationalized in terms of the different d-sp mixing, which for Cu and Au is larger than for Ag. Relativistic effects act to increase the 4d-5s mixing in Ag and to strengthen the intermetallic bond with Fe. In the carbonylated clusters a charge transfer from the metal M (M = Cu, Ag, or Au) to the Fe(CO)(4) groups occurs so that the atoms M can be considered in a formal +I oxidation state, rationalizing the nearly square-planar geometry of the metal frame. In fact, the local coordination of the M atoms is almost linear, as expected for complexes of M(I). The addition of extra electrons results in a stabilization of the clusters, indicating the electron-deficient nature of these compounds. Similar features have been found for the largest cluster synthesized so far for this class of compounds, [Ag(13){Fe(CO)(4)}(8)](n)(-), (n = 0-5). The nature and localization of the unpaired electron in the tetraanion is also discussed.  相似文献   

9.
10.
The collision cross sections of Ag(m)Au(n)+ (m+n)<6 cluster ions were determined. For bimetallic clusters, we observe a significant intracluster charge transfer leaving most of the ions positive charge on the silver atoms. The mixed trimeric ions Ag2Au+ and AgAu2+ are triangular like the pure gold and silver trimers. Most of the tetrameric clusters are rhombus shaped, with the exception of Ag3Au+, which has a Y structure with the gold atom in the center. Among the pentamers we find distorted X structures for all systems. For Ag2Au3+ we find an additional isomer which is a trigonal bipyramid. These findings are in line with predictions based on density-functional theory calculations, i.e., all these structures either represent the global minima or are within less than 0.1 eV of the predicted global minimum.  相似文献   

11.
Multistage mass spectrometry (MS(n)) experiments reveal that gas phase silver iodide cluster cations, Ag(n)I(m)(+), are readily built up in a stepwise fashion via ion-molecule reactions between mass selected silver (Ag(3)(+) and Ag(5)(+)) or silver hydride (Ag(2)H(+) and Ag(4)H(+)) cluster cations and allyl iodide, in contrast to their reactions with methyl iodide, which solely result in ligation of the clusters. The stoichiometries of these clusters range from 1 < or = n < or = 5 and 1 < or = m < or = 4, indicating the formation of several new subvalent silver iodide clusters. Collision induced dissociation (CID) experiments were carried out on each of these clusters to shed some light on their possible structures. The products arising from CID of the Ag(n)I(m)(+) clusters are highly dependent on the stoichiometry of the cluster. Thus the odd-electron clusters Ag(4)I(2)(+) and Ag(5)I(+) fragment via loss of a silver atom. In contrast, the even-electron cluster ions all fragment via loss of AgI. In addition, Ag(2)I(2) loss is observed for the Ag(4)I(3)(+) and Ag(5)I(2)(+) clusters, while loss of Ag(3)I(3) occurs for the stoichiometric Ag(5)I(4)(+) cluster. DFT calculations were carried out on these Ag(n)I(m)(+) clusters as well as the neutrals associated with the ion-molecule and CID reactions. A range of different isomeric structures were calculated and their structures are described. A noteworthy aspect is that ligation of these silver clusters by I can have a profound effect on the geometry of the silver cluster. For example, D(3h) Ag(3)(+) becomes C(2v) Ag(3)I(+), which in turn becomes C(2h) Ag(3)I(2)(+). Finally, the DFT predicted thermochemistry supports the different types of reaction channels observed in the ion-molecule reactions and CID experiments.  相似文献   

12.
We used a hybrid quantum-mechanics/molecular-mechanics (QM/MM) approach to simulate the adsorption of Au(n)() (n = 1-5), AuPd, and Au(2)Pd(2) clusters inside the TS-1 and S-1 pores. We studied nondefect and metal-vacancy defect sites in TS-1 and S-1 for a total of four different environments around the T6 crystallographic site. We predict stronger binding of all clusters near Ti sites in Ti-substituted framework compared to adsorption near Si sites-consistent with the experimental finding of a direct correlation between the Ti-loading and the Au-loading on the Au/TS-1 catalysts with high Si/Ti ratio. The cluster binding is also stronger near lattice-metal vacancies compared to fully coordinated, nondefect sites. In all the cases, a trend of binding energy (BE) versus Au cluster size (n) shows a peak at around n = 3-4. Our results show that there is enough room for the attack of H(2)O(2) on the Ti-defect site even with Au(1-4) adsorbed-a result that supports the possibility of H(2)O(2) spillover from the Au clusters to the adjacent Ti-defect sites. Mulliken charge analysis indicates that in all the cases there is electron density transfer to adsorbed clusters from the zeolite lattice. In the case of both gas-phase and adsorbed Au-Pd clusters, all the Pd atoms were positively charged, and all the Au atoms were negatively charged due to the higher electron-affinity of Au. We also found a correlation between the BE and the charge transfer to the clusters (the higher the charge transfer to the clusters, the higher the BE), and a universal correlation was found for Au(2-5) when BE and charge transfer were plotted on a per atom basis. A relatively larger charge transfer to the adsorbed clusters was found for the Ti sites versus the Si sites, and for the defect sites versus the nondefect sites. The trends in the BE were corroborated using Gibbs free energy of adsorption (DeltaG(ads)), and the implications of DeltaG(ads) in sintering of Au clusters are also discussed. Our results confirm that electronic factors such as cluster-charging are potentially important support effects for the Au/TS-1 catalyst.  相似文献   

13.
An ab initio molecular dynamics method was used to compare the ionic dissolution of soluble sodium chloride (NaCl) in water clusters with the highly insoluble silver chloride (AgCl). The investigations focused on the solvation structures, dynamics, and energetics of the contact ion pair (CIP) and of the solvent-separated ion pair (SSIP) in NaCl(H(2)O)(n) and AgCl(H(2)O)(n) with cluster sizes of n = 6, 10 and 14. We found that the minimum cluster size required to stabilize the SSIP configuration in NaCl(H(2)O)(n) is temperature-dependent. For n = 6, both configurations are present as two distinct local minima on the free-energy profile at 100 K, whereas SSIP is unstable at 300 K. Both configurations, separated by a low barrier (<10 kJ mol(-1)), are identifiable on the free energy profiles of NaCl(H(2)O)(n) for n = 10 and 14 at 300 K, with the Na(+)/Cl(-) pairs being internally solvated in the water cluster and the SSIP configuration being slightly higher in energy (<5 kJ mol(-1)). In agreement with the low bulk solubility of AgCl, no SSIP minimum is observed on the free-energy profiles of finite AgCl(H(2)O)(n) clusters. The AgCl interaction is more covalent in nature, and is less affected by the water solvent. Unlike NaCl, AgCl is mainly solvated on the surface in finite water clusters, and ionic dissolution requires a significant reorganization of the solvent structure.  相似文献   

14.
Equilibrium geometries, charge distributions, stabilities, and electronic properties of the Ag-adsorbed (SiO(2))(n) (n=1-7) clusters have been investigated using density functional theory with generalized gradient approximation for exchange-correlation functional. The results show that the Ag atom preferably binds to silicon atom with dangling bond in nearly a fixed direction, and the incoming Ag atoms tend to cluster on the existing Ag cluster leading to the formation of Ag islands. The adsorbed Ag atom only causes charge redistributions of the atoms near itself. The effect of the adsorbed Ag atom on the bonding natures and structural features of the silica clusters is minor, attributing to the tendency of stability order of Ag(SiO(2))(n) (n=1-7) clusters in consistent with silica clusters. In addition, the energy gaps between the highest occupied and lowest unoccupied molecular orbitals remarkably decrease compared with the pure (SiO(2))(n) (n=1-7) clusters, eventually approaching the near infrared radiation region. This suggests that these small clusters may be an alternative material which has a similar functionality in treating cancer to the large gold-coated silica nanoshells and the small Au(3)(SiO(2))(3) cluster.  相似文献   

15.
Electron impact mass spectra have been recorded for helium nanodroplets containing water clusters. In addition to identification of both H(+)(H(2)O)(n) and (H(2)O)(n)(+) ions in the gas phase, additional peaks are observed which are assigned to He(H(2)O)(n)(+) clusters for up to n=27. No clusters are detected with more than one helium atom attached. The interpretation of these findings is that quenching of (H(2)O)(n)(+) by the surrounding helium can cool the cluster to the point where not only is fragmentation to H(+)(H(2)O)(m) (where m < or = n-1) avoided, but also, in some cases, a helium atom can remain attached to the cluster ion as it escapes into the gas phase. Ab initio calculations suggest that the first step after ionization is the rapid formation of distinct H(3)O(+) and OH units within the (H(2)O)(n)(+) cluster. To explain the formation and survival of He(H(2)O)(n)(+) clusters through to detection, the H(3)O(+) is assumed to be located at the surface of the cluster with a dangling O-H bond to which a single helium atom can attach via a charge-induced dipole interaction. This study suggests that, like H(+)(H(2)O)(n) ions, the preferential location for the positive charge in large (H(2)O)(n)(+) clusters is on the surface rather than as a solvated ion in the interior of the cluster.  相似文献   

16.
The potential energy surfaces of the Li(n)Si(4)(-) (n = 0-5) clusters were explored using the Kick Coalescence method. We found that, for those systems with n ≤ 2, the butterfly and parallelogram Si(4)(2-) kernels prevail as building blocks; however, when n ≥ 3, the Si(4)(4-) tetrahedral kernel, which is commonly found in heavier alkali monosilicides, MSi (M = Na, K, Rb, Cs), arises as the prevailing building block. In addition, by a natural population analysis (NPA) we found that the maximum charge transfer -4 from Li atoms to Si atoms is attained when n = 3. The addition of more Li atoms to the Si(4)(4-) system does not increase the charge transfer, but keeps it almost constant at the maximum value. We also calculated theoretical vertical electron detachment energies (VDEs) for low-lying isomers of the Li(n)Si(4)(-) (n = 0-4) clusters in order to facilitate their experimental identification.  相似文献   

17.
Chlorine adsorption on small neutral, anionic, and cationic silver clusters Ag(n) (n=2-7) has been studied using the PW91PW91 density functional method. It was found that the adsorption of chlorine on the lowest-energy bare clusters does not always produce the lowest-energy complexes. In addition, the binding of chlorine can greatly change the geometries of the silver clusters in some cases. Among various possible adsorption sites, bridge site is energetically preferred for the neutral Ag(n) while top site is energetically more preferred for the anionic Ag(n) with n< or =6. For cationic clusters, adsorptions on bridge and face sites have similar binding energies, which are much larger than those on top sites. Natural bond orbital analyses show that irrespective of charge state, electrons always transfer from silver atoms to adsorbate and silver acts like alkali metals in the interaction with chlorine atom. Significant odd-even alternation patterns in the properties of the complexes have been observed: Even-electron clusters often have higher ionization energies, lower electron affinities, and higher dissociation energies than their odd-electron neighbors. It was also found that chlorine atoms bind more strongly with odd-electron bare clusters than with even-electron bare clusters. These patterns reveal that even-electron clusters are more stable than odd-electron clusters.  相似文献   

18.
The ground state and lowest triplet-state structures of [Re(4,4'-(COOEt)(2)-2,2'-bpy)(CO)(3)py]PF(6) photosensitizer (bpy=bipyridine, py=pyridine) have been studied with density functional theory (DFT). Time-dependent density functional theory (TD-DFT) was carried out to predict the photophysical properties of the photosensitizer. The effects of the solvents were evaluated using the conductor-like polarizable continuum (CPCM) method in dichloromethane, chloroform, acetonitrile, acetone, ethanol and dimethylsulfoxide. The electronic transition energies computed with BLYP, MPWPW91, B3LYP and MPW1PW91 functionals are compared with the experimental spectra. Based on the calculated excited energies, the experimental absorption maximum is assigned as metal-to-ligand charge transfer (MLCT) and ligand-to-ligand charge transfer (LLCT) mixed transition, and the luminescence originates from the lowest triplet state that is ascribed as the mixed transition of MLCT/LLCT.  相似文献   

19.
Density-functional theory with generalized gradient approximation for the exchange-correlation potential has been used to calculate the structural and electronic structure of Si(n)C(n) (n=1-10) clusters. The geometries are found to undergo a structural change from two dimensional to three dimensional when the cluster size n equals 4. Cagelike structures are favored as the cluster size increases. A distinct segregation between the silicon and carbon atoms is observed for these clusters. It is found that the C atoms favor to form five-membered rings as the cluster size n increases. However, the growth motif for Si atoms is not observed. The Si(n)C(n) clusters at n=2, 6, and 9 are found to possess relatively higher stability. On the basis of the lowest-energy geometries obtained, the size dependence of cluster properties such as binding energy, HOMO-LUMO gap, Mulliken charge, vibrational spectrum, and ionization potential has been computed and analyzed. The bonding characteristics of the clusters are discussed.  相似文献   

20.
Motivated by the synthesis of the first entirely inorganic metallocene sandwich ion [eta(5)-Ti-(P(5))(2)](2-) [E. Urnezius et al. Science 295, 832 (2002)], we have designed a new inorganic metallocene sandwich [eta(6)-V-(P(6))(2)] and multidecker sandwich clusters up to V(4)(P(6))(5) by employing an all electron gradient-corrected density functional theory. The binding energies of the V(n)(P(6))(n+1) complexes increase rapidly from half sandwich to the smallest full sandwich and become gradually afterwards. The highest occupied and lowest unoccupied molecular orbital gap and the vertical ionization energy decrease with increasing cluster size. The V(n)(P(6))(n+1) clusters are nonferromagnetic and prefer the lowest available spin states. The smallest sandwich cluster, V(P(6))(2), has the high stability and might serve as a building block for one-dimensional inorganic polymers with high stabilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号