首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on our previous work,a series of hydrazone moiety-bearing aminopyrimidines were synthesized.The compounds were evaluated for inhibitory activities against EGFRT790M/L858 R and antiproliferative activities against H1975 and A549 NSCLC cell lines harboring different forms of EGFR.Compounds 7f and7 k exhibited potent and selective activity in inhibition of gefitinib-resistant H1975 cancer cells(IC_(50);0.45,0.2μmol/L) while were much less active on A549 cancer cells(IC_(50);52.83,100μmol/L).Both compounds could be served as promising lead compounds for further investigation.  相似文献   

2.
A series of thieno[2,3-d]pyrimidines were designed and synthesized as epidermal growth factor receptor (EGFR) inhibitors. These compounds were tested for their ability to inhibit MCF-7 and A549 cancer cells. The most active compound, 12c , inhibited the growth of both cell lines, with IC50 values of 15.67 and 12.16 μM, respectively. It was found that 12c had inhibitory effects on both EGFRWT and EGFRT790M isoforms, with inhibitory partialities of 37.50 and 148.90 nM, respectively. Additionally, 12c was found to be safer than erlotinib against normal cell lines (IC50 = 38.61 μM). Compound 12c induced early and late apoptosis in A549 cells and arrested cell growth at G1 and G2/M phases. 12c was also found to increase caspases 3 and 8 ratios. Molecular docking indicated the correct binding modes of the synthesized compounds. MD simulations, MM-GBSA, and PLIP studies confirmed the precise binding of 12c to the EGFR protein over 100 ns.  相似文献   

3.
Epidermal growth factor receptor (EGFR), overexpressed in many types of cancer, has been proved as a high potential target for targeted cancer therapy due to its role in regulating proliferation and survival of cancer cells. In the present study, a series of designed vinyl sulfone derivatives was screened against EGFR tyrosine kinase (EGFR-TK) using in silico and in vitro studies. The molecular docking results suggested that, among 78 vinyl sulfones, there were eight compounds that could interact well with the EGFR-TK at the ATP-binding site. Afterwards, these screened compounds were tested for the inhibitory activity towards EGFR-TK using ADP-Glo™ kinase assay, and we found that only VF16 compound exhibited promising inhibitory activity against EGFR-TK with the IC50 value of 7.85 ± 0.88 nM. In addition, VF16 showed a high cytotoxicity with IC50 values of 33.52 ± 2.57, 54.63 ± 0.09, and 30.38 ± 1.37 µM against the A431, A549, and H1975 cancer cell lines, respectively. From 500-ns MD simulation, the structural stability of VF16 in complex with EGFR-TK was quite stable, suggesting that this compound could be a novel small molecule inhibitor targeting EGFR-TK.  相似文献   

4.
A new series of pyridothienopyrimidine derivatives was designed and evaluated as antimicrobial and anticancer agents. The target compounds were synthesized starting with 3-aminothieno[2,3-b]pyridine-2-carboxamide derivative 1 which underwent cyclocondensation reaction with aromatic aldehydes to give the key intermediates 2a,b. By further treatment of 2a,b with various reagents, the target 2,4-disubstituted-pyrido[3′,2′:4,5]thieno[2,3-d]pyrimidines 3a,b11a,b were obtained. To evaluate the antimicrobial activity of the new compounds, they were tested against five bacterial and five fungal strains. Compounds 6c, 8b, 9a and 9b revealed the most significant antimicrobial activity against the tested microorganisms with MIC values range (4–16 μg/mL). Also, compounds 2a,b11a,b were screened for their in vitro cytotoxic activity against HepG-2 and MCF-7 cancer cell lines compared with doxorubicin and cisplatin as references drugs. Moreover, compounds (2b, 4a, 6a, 7b, 7c and 9a) which exhibited the most potent anticancer activity, were further subjected to EGFRWT enzyme inhibition assay utilizing erlotinib as a standard drug. The compounds 6a, 7b, 7c and 9a which showed the most promising suppression effects were also evaluated as inhibitors against the mutant forms EGFRL858R and EGFRT790M. The 4-aminopyrazolone analogue 9a showed superior anticancer activity against both HepG-2 and MCF-7 cell lines (IC50 = 1.27, 10.80 μM, respectively) and more potent enzymatic inhibition activity against EGFRWT and its mutant forms EGFRL858R and EGFRT790M than that obtained by erlotinib (IC50 = 0.021, 0.053, 0.081 µM, respectively, IC50erlotinib; 0.027, 0.069, 0.550 µM, respectively). Finally, the molecular docking study showed good binding patterns of the most active compounds with the prospective target EGFRWT.  相似文献   

5.
Two series of olmutinib derivatives containing an acrylamide moiety were designed and synthesized, and their IC50 values against cancer cell lines (A549, H1975, NCI-H460, LO2, and MCF-7) were evaluated. Most of the compounds exhibited moderate cytotoxic activity against the five cancer cell lines. The most promising compound, H10, showed not only excellent activity against EGFR kinase but also positive biological activity against PI3K kinase. The structure–activity relationship (SAR) suggested that the introduction of dimethylamine scaffolds with smaller spatial structures was more favorable for antitumor activity. Additionally, the substitution of different acrylamide side chains had different effects on the activity of compounds. Generally, compounds H7 and H10 were confirmed as promising antitumor agents.  相似文献   

6.
Lung cancer is one of the most commonly occurring cancer mortality worldwide. The epidermal growth factor receptor (EGFR) plays an important role in cellular functions and has become the new promising target. Natural products and their derivatives with various structures, unique biological activities, and specific selectivity have served as lead compounds for EGFR. D-glucose and EGCG were used as starting materials. A series of glucoside derivatives of EGCG (7–12) were synthesized and evaluated for their in vitro anticancer activity against five human cancer cell lines, including HL-60, SMMC-7721, A-549, MCF-7, and SW480. In addition, we investigated the structure-activity relationship and physicochemical property–activity relationship of EGCG derivatives. Compounds 11 and 12 showed better growth inhibition than others in four cancer cell lines (HL-60, SMMC-7721, A-549, and MCF), with IC50 values in the range of 22.90–37.87 μM. Compounds 11 and 12 decreased phosphorylation of EGFR and downstream signaling protein, which also have more hydrophobic interactions than EGCG by docking study. The most active compounds 11 and 12, both having perbutyrylated glucose residue, we found that perbutyrylation of the glucose residue leads to increased cytotoxic activity and suggested that their potential as anticancer agents for further development.  相似文献   

7.
《中国化学快报》2020,31(5):1281-1287
Extensive structure-activity relationships (SARs) study of JND3229 was conducted to yield a series of new reversible 2-oxo-3,4-dihydropyrimido[4,5-d]pyrimidine privileged scaffold as EGFRC797S inhibitors. One of the most potent compound 6i potently suppressed EGFRL858R/T790M/C797S kinase with an IC50 value of 3.1 nmol/L, and inhibited the proliferation of BaF3 cells harboring EGFRL858R/T790M/C797S and EGFR19D/T790M/C797S mutants with IC50 values of 290 nmol/L and 316 nmol/L, respectively. Further, 6i dose-dependently induced suppression of the phosphorylation of EGFRL858R/T790M/C797S and EGFR19D/T790M/C797S in BaF3 cells. Compound 6i may serve as a promising lead compound for further drug discovery overcoming the acquired resistance of non-small cell lung cancer (NSCLC) patients.  相似文献   

8.
Scaffolds hybridization is a well-known drug design strategy for antitumor agents. Herein, series of novel indolyl-pyrimidine hybrids were synthesized and evaluated in vitro and in vivo for their antitumor activity. The in vitro antiproliferative activity of all compounds was obtained against MCF-7, HepG2, and HCT-116 cancer cell lines, as well as against WI38 normal cells using the resazurin assay. Compounds 1–4 showed broad spectrum cytotoxic activity against all these cancer cell lines compared to normal cells. Compound 4g showed potent antiproliferative activity against these cell lines (IC50 = 5.1, 5.02, and 6.6 μM, respectively) comparable to the standard treatment (5-FU and erlotinib). In addition, the most promising group of compounds was further evaluated for their in vivo antitumor efficacy against EAC tumor bearing mice. Notably, compound 4g showed the most potent in vivo antitumor activity. The most active compounds were evaluated for their EGFR inhibitory (range 53–79%) activity. Compound 4g was found to be the most active compound against EGFR (IC50 = 0.25 µM) showing equipotency as the reference treatment (erlotinib). Molecular modeling study was performed on compound 4g revealed a proper binding of this compound inside the EGFR active site comparable to erlotinib. The data suggest that compound 4g could be used as a potential anticancer agent.  相似文献   

9.
A series of novel quinoline-based tetracyclic ring-systems were synthesized and evaluated in vitro for their antiplasmodial, antiproliferative and antimicrobial activities. The novel hydroiodide salts 10 and 21 showed the most promising antiplasmodial inhibition, with compound 10 displaying higher selectivity than the employed standards. The antiproliferative assay revealed novel pyridophenanthridine 4b to be significantly more active against human prostate cancer (IC50 = 24 nM) than Puromycin (IC50 = 270 nM) and Doxorubicin (IC50 = 830 nM), which are used for clinical treatment. Pyridocarbazoles 9 was also moderately effective against all the employed cancer cell lines and moreover showed excellent biofilm inhibition (9a: MBIC = 100 µM; 9b: MBIC = 100 µM).  相似文献   

10.

Paradoxical Raf activation via Raf dimerization is a major drawback of wild/mutant B-Raf inhibitors. Herein, we report that CB-1 a novel, potent B-Raf/c-Raf dual inhibitor, effective against colon cancer cells, irrespective of their genetic status. High-throughput virtual screening of the ChemBridge library against wild B-Raf (B-RafWT), mutant B-Raf (B-RafV600E), and c-Raf was performed using an automated protocol with the AutoDock-VINA. Caco-2 and HT-29 cells were used. Of the 23,365 compounds screened computationally, CB-1 showed the highest binding energy towards B-RafWT with a ΔGbinding score of ? 13.0 kcal/mol. The compound was also predicted to be effective against B-RafV600E and c-Raf molecules with ΔGbinding energies of ? 10.6 and ? 10.1 kcal/mol, respectively. The compound inhibited B-RafWT, B-RafV600E and c-Raf kinases with IC50 values of 27.13, 51.70, and 40.23 nM, respectively. The GI50 value of CB-1 was 247.9 nM in B-RafWT-expressing Caco-2 cells and 352.4 nM in B-RafV600E-expressing HT-29 cells. Dose-dependent increases in total apoptosis and G1 cell cycle phase arrest was observed in CB-1-treated colon cancer cells. The compound decreased B-Raf expression in both wild and mutant colon cancer cells. CB-1, a novel, potent dual B-Raf/c-Raf inhibitor was effective against colon cancer cells bearing wild-type and mutant variants of B-Raf expression.

  相似文献   

11.
A series of novel coumarin-3-carboxamide derivatives were designed and synthesized to evaluate their biological activities. The compounds showed little to no activity against gram-positive and gram-negative bacteria but specifically showed potential to inhibit the growth of cancer cells. In particular, among the tested compounds, 4-fluoro and 2,5-difluoro benzamide derivatives (14b and 14e, respectively) were found to be the most potent derivatives against HepG2 cancer cell lines (IC50 = 2.62–4.85 μM) and HeLa cancer cell lines (IC50 = 0.39–0.75 μM). The activities of these two compounds were comparable to that of the positive control doxorubicin; especially, 4-flurobenzamide derivative (14b) exhibited low cytotoxic activity against LLC-MK2 normal cell lines, with IC50 more than 100 μM. The molecular docking study of the synthesized compounds revealed the binding to the active site of the CK2 enzyme, indicating that the presence of the benzamide functionality is an important feature for anticancer activity.  相似文献   

12.
New pyridine, pyrazoloyridine, and furopyridine derivatives substituted with naphthyl and thienyl moieties were designed and synthesized starting from 6-(naphthalen-2-yl)-2-oxo-4-(thiophen-2-yl)-1,2-dihydropyridine-3-carbonitrile (1). The chloro, methoxy, cholroacetoxy, imidazolyl, azide, and arylamino derivatives were prepared to obtain the pyridine-C2 functionalized derivatives. The derived pyrazolpyridine-N-glycosides were synthesized via heterocyclization of the C2-thioxopyridine derivative followed by glycosylation using glucose and galactose. The furopyridine derivative 14 and the tricyclic pyrido[3′,2′:4,5]furo[3,2-d]pyrimidine 15 were prepared via heterocyclization of the ester derivative followed by a reaction with formamide. The newly synthesized compounds were evaluated for their ability to in vitro inhibit the CDK2 enzyme. In addition, the cytotoxicity of the compounds was tested against four different human cancer cell lines (HCT-116, MCF-7, HepG2, and A549). The CDK2/cyclin A2 enzyme inhibitory results revealed that pyridone 1, 2-chloro-6-(naphthalen-2-yl)-4-(thiophen-2-yl)nicotinonitrile (4), 6-(naphthalen-2-yl)-4-(thiophen-2-yl)-1H-pyrazolo[3,4-b]pyridin-3-amine (8), S-(3-cyano-6-(naphthaen-2-yl)-4-(thiophen-2-yl)pyridin-2-yl) 2-chloroethanethioate (11), and ethyl 3-amino-6-(naphthalen-2-yl)-4-(thiophen-2-yl)furo[2,3-b]pyridine-2-carboxylate (14) are among the most active inhibitors with IC50 values of 0.57, 0.24, 0.65, 0.50, and 0.93 µM, respectively, compared to roscovitine (IC50 0.394 μM). Most compounds showed significant inhibition on different human cancer cell lines (HCT-116, MCF-7, HepG2, and A549) with IC50 ranges of 31.3–49.0, 19.3–55.5, 22.7–44.8, and 36.8–70.7 μM, respectively compared to doxorubicin (IC50 40.0, 64.8, 24.7 and 58.1 µM, respectively). Furthermore, a molecular docking study suggests that most of the target compounds have a similar binding mode as a reference compound in the active site of the CDK2 enzyme. The structural requirements controlling the CDK2 inhibitory activity were determined through the generation of a statistically significant 2D-QSAR model.  相似文献   

13.
Increase in the number of infections caused by pathogenic microbes in cancer patients has prompted the searcher to invest in the development of agents having dual anticancer and antimicrobial properties. The present study is concerned with synthesis and screening for anticancer and antimicrobial activity of a series of 5-hydrazinyl-2-(2-(1-(thien-2-yl)ethylidene)hydrazinyl)thiazole derivatives. The structure elucidation of the synthesized hydrazinyl thiazole derivatives was illustrated by spectroscopic and elemental analysis. All the newly synthesized compounds 5a-p were evaluated for in-vitro cytotoxic activity against breast carcinoma (MCF-7 cell line), hepatocellular carcinoma (HePG-2) and colorectal cancer (HCT-116) cell lines using MTT assay method. Compounds 5 g, 5h showed broad spectrum activity against three cancer cell lines with IC50 ranged from 3.81 to 11.34 µM in compared to the reference drug Roscovitine (IC50 = 9.32 to 13.82 µM), while compounds 5 l and 5 m were found to be more selective against HePG-2 and HCT-116 cell line (IC50 = 9.29 and 8.93 µM respectively) and compound 5j was more selective against HePG-2 and MCF-7 cell lines (IC50 = 6.73 and 10.87 µM respectively). The inhibitory activity of the most promising compounds was tested against the EGFR and ARO enzymes and were further tested for apoptosis and Annexin V/PI staining. The results of enzyme-based tests revealed that the tested compound 5j has a dual inhibitory effect on the EGFR and ARO enzymes with IC50 = 82.8 and 98.6 nM respectively in compared to the reference drugs Erlotinib and Letrozole (IC50 = 62.4 and 79 nM respectively). Furthermore, the majority of the tested hydrazinyl thiazole derivatives exhibited significant antimicrobial activity against the used pathogenic microbes species. Compounds 4b, 5h, 5j and 5 m exerted a good antibacterial and antifungal activity against all tested pathogenic microbes. Therefore, it was concluded that compounds 5 h, 5j and 5 m proved to possess dual anticancer and antimicrobial agent and may serves as a useful lead compounds in search for further modification or derivatization to give more potent and selective agents.  相似文献   

14.
Focal adhesion kinase (FAK) is responsible for the development and progression of various malignancies. With the aim to explore novel FAK inhibitors as anticancer agents, a series of 2,4-dianilinopyrimidine derivatives 8a–8i and 9a–9g containing 4-(morpholinomethyl)phenyl and N-substituted benzamides have been designed and synthesized. Among them, compound 8a displayed potent anti-FAK activity (IC50 = 0.047 ± 0.006 μM) and selective antiproliferative effects against H1975 (IC50 = 0.044 ± 0.011 μM) and A431 cells (IC50 = 0.119 ± 0.036 μM). Furthermore, compound 8a also induced apoptosis in a dose-dependent manner, arresting the cells in S/G2 phase and inhibiting the migration of H1975 cells, all of which were superior to those of TAE226. The docking analysis of compound 8a was performed to elucidate its possible binding modes with FAK. These results established 8a as our lead compound to be further investigated as a potential FAK inhibitor and anticancer agent.  相似文献   

15.
A series of combretastatin A-4 based chalcones ( 14a-l ) were designed, synthesized and these compounds examined for inhibitory effects on the proliferation of human lung (A549), breast (MCF-7), melanoma (A375), and colon (HT-29) carcinoma cells. Compounds 14b , 14c , 14e , 14h , and 14i (tri/dimethoxy, methyl, and mono/dinitro derivatives) have exhibited the most potent antiproliferative activity with IC50 < 2 μM and the hexa methoxy derivative 14b , the most promising one, which displayed the potent inhibitory activities in MCF-7 (IC50: 10 nM), A375 (IC50: 12 nM), and A549 (IC50: 65 nM) cell lines, and is 18 times more potent than the CA-4. Compound 14b represents a new scaffold and the results provide insights into further development of anticancer agents.  相似文献   

16.
A simple and efficient BF3-OEt2 promoted C3-alkylation of indole has been developed to obtain3-indolylsuccinimidesfrom commercially available indoles and maleimides, with excellent yields under mild reaction conditions. Furthermore, anti-proliferative activity of these conjugates was evaluated against HT-29 (Colorectal), Hepg2 (Liver) and A549 (Lung) human cancer cell lines. One of the compounds, 3w, having N,N-Dimethylatedindolylsuccinimide is a potent congener amongst the series with IC50 value 0.02 µM and 0.8 µM against HT-29 and Hepg2 cell lines, respectively, and compound 3i was most active amongst the series with IC50 value 1.5 µM against A549 cells. Molecular docking study and mechanism of reaction have briefly beendiscussed. This method is better than previous reports in view of yield and substrate scope including electron deficient indoles.  相似文献   

17.
In the current study, a simple in silico approach using free software was used with the experimental studies to optimize the antiproliferative activity and predict the potential mechanism of action of pyrrolizine-based Schiff bases. A compound library of 288 Schiff bases was designed based on compound 10, and a pharmacophore search was performed. Structural analysis of the top scoring hits and a docking study were used to select the best derivatives for the synthesis. Chemical synthesis and structural elucidation of compounds 16a–h were discussed. The antiproliferative activity of 16a–h was evaluated against three cancer (MCF7, A2780 and HT29, IC50 = 0.01–40.50 μM) and one normal MRC5 (IC50 = 1.27–24.06 μM) cell lines using the MTT assay. The results revealed the highest antiproliferative activity against MCF7 cells for 16g (IC50 = 0.01 μM) with an exceptionally high selectivity index of (SI = 578). Cell cycle analysis of MCF7 cells treated with compound 16g revealed a cell cycle arrest at the G2/M phase. In addition, compound 16g induced a dose-dependent increase in apoptotic events in MCF7 cells compared to the control. In silico target prediction of compound 16g showed six potential targets that could mediate these activities. Molecular docking analysis of compound 16g revealed high binding affinities toward COX-2, MAP P38α, EGFR, and CDK2. The results of the MD simulation revealed low RMSD values and high negative binding free energies for the two complexes formed between compound 16g with EGFR, and CDK2, while COX-2 was in the third order. These results highlighted a great potentiality for 16g to inhibit both CDK2 and EGFR. Taken together, the results mentioned above highlighted compound 16g as a potential anticancer agent.  相似文献   

18.
The development of cancer treatments requires continuous exploration and improvement, in which the discovery of new drugs for the treatment of cancer is still an important pathway. In this study, based on the molecular hybridization strategy, a new structural framework with an N-aryl-N’-arylmethylurea scaffold was designed, and 16 new target compounds were synthesized and evaluated for their antiproliferative activities against four different cancer cell lines A549, MCF7, HCT116, PC3, and human liver normal cell line HL7702. The results have shown seven compounds with 1-methylpiperidin-4-yl groups having excellent activities against all four cancer cell lines, and they exhibited scarcely any activities against HL7702. Among them, compound 9b and 9d showed greatly excellent activity against the four kinds of cells, and the IC50 for MCF7 and PC3 cell lines were even less than 3 μM.  相似文献   

19.
Sophora flavescens is a regularly used traditional Chinese medicine. In an attempt to discover adequate active agents, the isoprenoid flavonoids from S. flavescens were further investigated. In this work, two new compounds (1–2, kurarinol A-B) together with 26 known ones (3–28) were isolated and elucidated on the basis of extensive NMR, UV and MS analyses. Furthermore, the antioxidant activity of all constituents was assessed through ABTS, PTIO and DPPH methodologies and also were evaluated for cytotoxic activity by three tumor cell lines (HepG2, A549 and MCF7) and one human normal cell line (LO2 cells). As a result, a multitude of components revealed significant inhibitory activity. In particular, compound 1–2 (kurarinol A-B), two new flavanonols derivatives, exhibited the most potent ABTS inhibitory activity with IC50 of 1.21 µg/mL and 1.81 µg/mL, respectively. Meanwhile, the new compound 1 demonstrated remarkable cytotoxicity against three cancer cells lines with IC50 values ranging from 7.50–10.55 μM but showed little effect on the normal cell. The two new isoprenoid flavonoids could be promising antioxidant and anti-tumor nature agents.  相似文献   

20.
Novel triazoloquinoxaline-pyrazole hybrids have been developed and synthesized. All derivatives' anticancer activity has been evaluated using Sulforhodamine-B (SRB) assay for cancer cell lines MCF-7, HepG-2, and HCT-116. Compound 12b was 2-fold more cytotoxic than Doxorubicin, while 12a , c demonstrated comparable cytotoxicity to the reference Doxorubicin. Further investigations on the most active derivatives 12a-c were done to study their inhibitory activity on two EGFR subtypes wild EGFR and mutant EGFR (L858R) tyrosine kinases in MCF-7 cell lines. Compound 12b exhibited potent inhibitory activity toward wild EGFR (IC50: 0.98 μM) when compared to Gefitinib (IC50:18.07 μM). 12b also possessed a marked inhibition against mutant EGFR (L858R-TK) exhibiting (IC50:27.45 μM) in comparison to Lapatinib (IC50: 61.06 μM). Compound 12b improved the active Caspase-3 value and the BAX/Bcl-2 reference. Furthermore, 12b showed G2/M cell cycle arrest induced apoptosis in cell line MCF-7. In addition, the most active derivatives have been orally bioavailable as shown in the in silico determination of the ADME characters. The binding pattern of compound 12b was also studied by molecular docking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号