首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An eight-degree-of-freedom (8DOF) time-dependent wave-packet approach has been developed to study the H(2)+C(2)H-->H+C(2)H(2) reaction system. The 8DOF model is obtained by fixing one of the Jacobi torsion angle in the nine-degree-of-freedom AB+CDE reaction system. This study is an extension of the previous seven-degree-of-freedom (7DOF) computation [J. Chem. Phys. 119, 12057 (2003)] of this reaction system. This study shows that vibrational excitations of H(2) enhance the reaction probability, whereas the stretching vibrational excitations of C(2)H have only a small effect on the reactivity. Furthermore, the bending excitation of C(2)H, compared to the ground-state reaction probability, hinders the reactivity. A comparison of the rate constant between the 7DOF calculation and the present 8DOF results has been made. The theoretical and experimental results agree with each other very well when the present 8DOF results are adjusted to account for the lower transition state barrier heights found in recent ab initio calculations.  相似文献   

2.
A full dimensional, nine-degree-of-freedom (9DOF), time-dependent quantum dynamics wave packet approach is presented for the study of the H2+C2H-->H+C2H2 reaction system. This is the first full dimensional quantum dynamics study for a diatom-triatom reaction system. The effects of the initial vibrational and rotational excitations of the reactants on the reactivity of this reaction are investigated. This study shows that vibrational excitations of H2 enhance the reactivity; whereas, the vibrational excitations of C2H only have a small effect on the reaction probability. In addition, the bending excitations of C2H, compared to the ground state reaction probability, hinder the reactivity. Comparison of the ground state reaction probabilities of the 9DOF and 8DOF shows the reaction probability from the full dimensional calculation is larger, with more prominent resonance features.  相似文献   

3.
4.
The C(3)H(5) potential energy surface (PES) encompasses molecules of great significance to hydrocarbon combustion, including the resonantly stabilized free radicals propargyl (plus H(2)) and allyl. In this work, we investigate the interconversions that take place on this PES using high level coupled cluster methodology. Accurate geometries are obtained using coupled cluster theory with single, double, and perturbative triple excitations [CCSD(T)] combined with Dunning's correlation consistent quadruple-ζ basis set cc-pVQZ. The energies for these stationary points are then refined by a systematic series of computations, within the focal point scheme, using the cc-pVXZ (X = D, T, Q, 5, 6) basis sets and correlation treatments as extensive as coupled cluster with full single, double, and triple excitation and perturbative quadruple excitations [CCSDT(Q)]. Our benchmarks provide a zero-point vibrational energy (ZPVE) corrected barrier of 10.0 kcal mol(-1) for conversion of allene + H to propargyl + H(2). We also find that the barrier for H addition to a terminal carbon atom in allene leading to propenyl is 1.8 kcal mol(-1) lower than that for the addition to a central atom to form the allyl radical.  相似文献   

5.
Three-dimensional time-dependent quantum wave packet calculation was performed to study the reaction dynamics of Cl+H2(D2) on two potential energy surfaces (CW PESs). The first CW PES is with spin-orbit correction; the second is without spin-orbit correction. The integral cross-section and reaction probability as a function of collision energy are calculated in the collision energy range of 0.1 eV to 1.4 eV. For reaction of Cl with D2, the reaction section with spin-orbit correction has a shift toward the high energy because the barrier height increases. As for the reaction of Cl with H2 at low collision energy, it is more reactive on the PES with spin-orbit correction than on the low barrier height PES without spin-orbit correction, due to the tunnel effect for the reaction of the Cl with H2. When the collision energy is higher than 0.7 eV, the reactivity on the low barrier height PES is larger than that on the high barrier height PES. It is believed that the barrier height plays a very important role in the reactivity of Cl with (H2, D2). For the Cl+H2 reaction the barrier width is also very important because of the tunneling effect.  相似文献   

6.
We present a three-dimensional quantum scattering model to treat reactions of the type H + C2H6 --> H2 + C2H5. The model allows the torsional and the stretching degrees of freedom to be treated explicitly. Zero-point energies of the remaining modes are taken into account in electronic structure calculations. An analytical potential-energy surface was developed from a minimal number of ab initio geometry evaluations using the CCSD(T,full)/cc-pVTZ//MP2(full)/cc-pVTZ level of theory. The reaction is endothermic by 1.5 kcal mol(-1) and exhibits a vibrationally adiabatic barrier of 12.0 kcal mol(-1). The results show that the torsional mode influences reactivity when coupled with the vibrational C-H stretching mode. We also found that ethyl radical products are formed internally excited in the torsional mode.  相似文献   

7.
Reaction probabilities as a function of total angular momentum (opacity functions) and the resulting reaction cross sections for the collision of open shell S((1)D) atoms with para-hydrogen have been calculated in the kinetic energy range 0.09-10 meV (1-120 K). The quantum mechanical hyperspherical reactive scattering method and quasi-classical trajectory and statistical quasi-classical trajectory approaches were used. Two different ab initio potential energy surfaces (PESs) have been considered. The widely used reproducing kernel Hilbert space (RKHS) PES by Ho et al. [T.-S. Ho, T. Hollebeek, H. Rabitz, S. D. Chao, R. T. Skodje, A. S. Zyubin, and A. M. Mebel, J. Chem. Phys 116, 4124 (2002)] and the recently published accurate double many-body expansion (DMBE)/complete basis set (CBS) PES by Song and Varandas [Y. Z. Song and A. J. C. Varandas, J. Chem. Phys. 130, 134317 (2009)]. The calculations at low collision energies reveal very different dynamical behaviors on the two PESs. The reactivity on the RKHS PES is found to be considerably larger than that on the DMBE/CBS PES as a result of larger reaction probabilities at low total (here also orbital) angular momentum values and to opacity functions which extend to significantly larger total angular momentum values. The observed differences have their origin in two major distinct topographic features. Although both PESs are essentially barrierless for equilibrium H-H distances, when the H-H bond is compressed the DMBE/CBS PES gives rise to a dynamical barrier which limits the reactivity of the system. This barrier is completely absent in the RHKS PES. In addition, the latter PES exhibits a van der Walls well in the entrance channel which reduces the height of the centrifugal barrier and is able to support resonances. As a result, a significant larger cross section is found on this PES, with marked oscillations attributable to shape resonances and/or to the opening of partial wave contributions. The comparison of the results on both PESs is illustrative of the wealth of the dynamics at low collision energy. It is also illuminating about the difficulties encountered in modeling an all-purpose global potential energy surface.  相似文献   

8.
A global 12-dimensional ab initio interpolated potential energy surface (PES) for the SiH(4)+H-->SiH(3)+H(2) reaction is presented. The ab initio calculations are based on the unrestricted quadratic configuration interaction treatment with all single and double excitations together with the cc-pVTZ basis set, and the modified Shepard interpolation method of Collins and co-workers [K. C. Thompson et al., J. Chem. Phys. 108, 8302 (1998); M. A. Collins, Theor. Chem. Acc. 108, 313 (2002); R. P. A. Bettens and M. A. Collins, J. Chem. Phys. 111, 816 (1999)] is applied. Using this PES, classical trajectory and variational transition state theory calculations have been carried out, and the computed rate constants are in good agreement with the available experimental data.  相似文献   

9.
Ab initio calculations of transition state structure and reaction enthalpy of the F + H2-->HF + H reaction has been carried out by the fixed-node diffusion quantum Monte Carlo method in this study. The Monte Carlo sampling is based on the Ornstein-Uhlenbeck random walks guided by a trial wave function constructed from the floating spherical Gaussian orbitals and spherical Gaussian geminals. The Monte Carlo calculated barrier height of 1.09(16) kcal/mol is consistent with the experimental values, 0.86(10)/1.18(10) kcal/mol, and the calculated value from the multireference-type coupled-cluster (MRCC) calculation with the aug-cc-pVQZ(F)/cc-pVQZ(H) basis set, 1.11 kcal/mol. The Monte Carlo-based calculation also gives a similar value of the reaction enthalpy, -32.00(4) kcal/mol, compared with the experimental value, -32.06(17) kcal/mol, and the calculated value from a MRCC/aug-cc-pVQZ(F)/cc-pVQZ(H) calculation, -31.94 kcal/mol. This study clearly indicates a further application of the random-walk-based approach in the field of quantum chemical calculation.  相似文献   

10.
We have performed rigorous quantum five-dimensional (5D) calculations and analysis of the translation-rotation (T-R) energy levels of one H(2), D(2), and HD molecule inside the small dodecahedral (H(2)O)(20) cage of the structure II clathrate hydrate, which was treated as rigid. The H(2)- cage intermolecular potential energy surface (PES) used previously in the molecular dynamics simulations of the hydrogen hydrates [Alavi et al., J. Chem. Phys. 123, 024507 (2005)] was employed. This PES, denoted here as SPC/E, combines an effective, empirical water-water pair potential [Berendsen et al., J. Phys. Chem. 91, 6269 (1987)] and electrostatic interactions between the partial charges placed on H(2)O and H(2). The 5D T-R eigenstates of HD were calculated also on another 5D H(2)-cage PES denoted PA-D, used by us earlier to investigate the quantum T-R dynamics of H(2) and D(2) in the small cage [Xu et al., J. Phys. Chem. B 110, 24806 (2006)]. In the PA-D PES, the hydrogen-water pair potential is described by the ab initio 5D PES of the isolated H(2)-H(2)O dimer. The quality of the SPC/E and the PA-D H(2)-cage PESs was tested by direct comparison of the T-R excitation energies calculated on them to the results of two recent inelastic neutron scattering (INS) studies of H(2) and HD inside the small clathrate cage. The translational fundamental and overtone excitations, as well as the triplet splittings of the j=0-->j=1 rotational transitions, of H(2) and HD in the small cage calculated on the SPC/E PES agree very well with the INS results and represent a significant improvement over the results computed on the PA-D PES. Our calculations on the SPC/E PES also make predictions about several spectroscopic observables for the encapsulated H(2), D(2), and HD, which have not been measured yet.  相似文献   

11.
The radical-radical reaction dynamics of ground-state atomic oxygen [O(3P)] with propargyl radicals (C3H3) has first been investigated in a crossed beam configuration. The radical reactants O(3P) and C3H3 were produced by the photodissociation of NO2 and the supersonic flash pyrolysis of precursor propargyl bromide, respectively. A new exothermic channel of O(3P) + C3H3 --> C3H2 + OH was identified and the nascent distributions of the product OH in the ground vibrational state (X 2Pi:nu" = 0) showed bimodal rotational excitations composed of the low- and high-N" components without spin-orbit propensities. The averaged ratios of Pi(A')/Pi(A") were determined to be 0.60 +/- 0.28. With the aid of ab initio theory it is predicted that on the lowest doublet potential energy surface, the reaction proceeds via the addition complexes formed through the barrierless addition of O(3P) to C3H3. The common direct abstraction pathway through a collinear geometry does not occur due to the high entrance barrier in our low collision energy regime. In addition, the major reaction channel is calculated to be the formation of propynal (CHCCHO) + H, and the counterpart C3H2 of the probed OH product in the title reaction is cyclopropenylidene (1c-C3H2) after considering the factors of barrier height, reaction enthalpy and structural features of the intermediates formed along the reaction coordinate. On the basis of the statistical prior and rotational surprisal analyses, the ratio of population partitioning for the low- and high-N" is found to be about 1:2, and the reaction is described in terms of two competing addition-complex mechanisms: a major short-lived dynamic complex and a minor long-lived statistical complex. The observed unusual reaction mechanism stands in sharp contrast with the reaction of O(3P) with allyl radical (C3H5), a second significant conjugated hydrocarbon radical, which shows totally dynamic processes [J. Chem. Phys. 117, 2017 (2002)], and should be understood based upon the characteristic electronic structures and reactivity of the intermediates on the potential energy surface.  相似文献   

12.
We report quantum mechanical calculations of center-of-mass differential cross sections (DCS) for the F+H(2)-->HF+H reaction performed on the multistate [Alexander-Stark-Werner (ASW)] potential energy surfaces (PES) that describe the open-shell character of this reaction. For comparison, we repeat single-state calculations with the Stark-Werner (SW) and Hartke-Stark-Werner (HSW) PESs. The ASW DCSs differ from those predicted for the SW and HSW PES in the backward direction. These differences arise from nonadiabatic coupling between several electronic states. The DCSs are then used in forward simulations of the laboratory-frame angular distributions (ADs) measured by Lee, Neumark, and co-workers [J. Chem. Phys. 82, 3045 (1985)]. The simulations are scaled to match experiment over the range 12 degrees 相似文献   

13.
The dynamics and kinetics of the abstraction reactions of H atoms with ethane and methanol have been studied using a quantum mechanical procedure. Bonds being broken and formed are treated with explicit hyperspherical quantum dynamics. The ab initio potential energy surfaces for these reactions have been developed from a minimal number of grid points (average of 48 points) and are given by analytical functionals. All the degrees of freedom except the breaking and forming bonds are optimized using the second order perturbation theory method with a correlation consistent polarized valence triple zeta basis set. Single point energies are calculated on the optimized geometries with the coupled cluster theory and the same basis set. The reaction of H with C2H6 is endothermic by 1.5 kcal/mol and has a vibrationally adiabatic barrier of 12 kcal/mol. The reaction of H with CH3OH presents two reactive channels: the methoxy and the hydroxymethyl channels. The former is endothermic by 0.24 kcal/mol and has a vibrationally adiabatic barrier of 13.29 kcal/mol, the latter reaction is exothermic by 7.87 kcal/mol and has a vibrationally adiabatic barrier of 8.56 kcal/mol. We report state-to-state and state-selected cross sections together with state-to-state rate constants for the title reactions. Thermal rate constants for these reactions exhibit large quantum tunneling effects when compared to conventional transition state theory results. For H+CH3OH, it is found that the CH2OH product is the dominant channel, and that the CH3O channel contributes just 2% at 500 K. For both reactions, rate constants are in good agreement with some measurements.  相似文献   

14.
The celebrated C(2)H(5)+O(2) reaction is an archetype for hydrocarbon combustion, and the critical step in the process is the concerted elimination of HO(2) from the ethylperoxy intermediate (C(2)H(5)O(2)). Master equation kinetic models fitted to measured reaction rates place the concerted elimination barrier 3.0 kcal mol(-1) below the C(2)H(5)+O(2) reactants, whereas the best previous electronic structure computations yield a barrier more than 2.0 kcal mol(-1) higher. We resolve this discrepancy here by means of the most rigorous computations to date, using focal point methods to converge on the ab initio limit. Explicit computations were executed with basis sets as large as cc-pV5Z and correlation treatments as extensive as coupled cluster through full triples with a perturbative inclusion of quadruple excitations [CCSDT(Q)]. The final predicted barrier is -3.0 kcal mol(-1), bringing the concerted elimination mechanism into precise agreement with experiment. This work demonstrates that higher correlation treatments such as CCSDT(Q) are not only feasible on systems of chemical interest but are necessary to supply accuracy beyond 0.5 kcal mol(-1), which is not obtained with the "gold standard" CCSD(T) method. Finally, we compute the enthalpy of formation of C(2)H(5)O(2) to be Delta(f)H degrees (298 K)=-5.3+/-0.5 kcal mol(-1) and Delta(f)H degrees (0 K)=-1.5+/-0.5 kcal mol(-1).  相似文献   

15.
A theoretical study of H(2) and D(2) desorbing from Cu(111) is reported. The study makes use of the LEPS PES of Dai and Zhang [J. Chem. Phys. 1995, 102, 6280]. The LEPS parameters have been modified in order to lower the barrier threshold in conformity with accurate ab initio electronic structure calculations. The topological study of the modified PES by the CHAIN method reveals unambiguously that the transition state (TS) is located at the top of a unique early barrier along the desorption path. The adsorbed H atoms are supposed to be in thermal equilibrium with the metal surface. Batches of classical trajectories (CT) are then carried out from the TS onto the products with their initial conditions canonically distributed and the effect of their possible recrossing of the TS taken into account according to Keck's method [Discuss. Faraday Soc. 1962, 33, 173]. Product state distributions are then calculated using the Gaussian weighting procedure [Chem. Phys. Lett. 2004, 397, 106] to account for the quantization of the vibration motion of the desorbed diatom. These distributions are in overall good agreement with experimental measurements. On average, the early barrier to desorption results in a significant vibrational excitation of the final diatom and a strong deexcitation of its rotational angular momentum J from the TS onto the products. Moreover, the orientation of the rotation plane is roughly random for low values of J (both cartwheel and helicopter motions are observed) while it is more likely parallel to the metal surface for large values of J (predominance for helicopter motion). These findings are analyzed in some details.  相似文献   

16.
We have studied the dissociative chemisorption and scattering of N(2) on and from Ru(0001), using a six-dimensional quasiclassical trajectory method. The potential energy surface, which depends on all the molecular degrees of freedom, has been built applying a modified Shepard interpolation method to a data set of results from density functional theory, employing the RPBE generalized gradient approximation. The frozen surface and Born-Oppenheimer [Ann. Phys. (Leipzig) 84, 457 (1927)] approximations were used, neglecting phonons and electron-hole pair excitations. Dissociative chemisorption probabilities are found to be very small even for translational energies much higher than the minimum reaction barrier, in good agreement with experiment. A comparison to previous low dimensional calculations shows the importance of taking into account the multidimensional effects of N(2) rotation and translation parallel to the surface. The new calculations strongly suggest a much smaller role of nonadiabatic effects than previously assumed on the basis of a comparison between low dimensional results and experiments [J. Chem. Phys. 115, 9028 (2001)]. Also in agreement with experiment, our theoretical results show a strong dependence of reaction on the initial vibrational state. Computed angular scattering distributions and parallel translation energy distributions are in good agreement with experiments on scattering, but the theory overestimates vibrational and rotational excitations in scattering.  相似文献   

17.
High level ab initio calculations using complete active space self-consistent field and multi reference single and double excitation configuration interaction methods with cc-pVDZ (correlation consistent polarized valence double zeta) and cc-pVTZ (triple zeta) basis sets have been performed to elucidate the reaction mechanism of the ion-molecule reaction, C2H2(1Sigmag+) + O+(4S), for which collision experiment has been performed by Chiu et al. [J. Chem. Phys. 109, 5300 (1998)]. The minor low-energy process leading to the weak spin-forbidden product C2H2+ (2Piu) + O(1D) has been studied previously and will not be discussed here. The major pathways to form charge-transfer (CT) products, C2H2+ (2Piu) + O(3P) (CT1) and C2H2+ (4A2) + O(3P) (CT2), and the covalently bound intermediates are investigated. The approach of the oxygen atom cation to acetylene goes over an energy barrier TS1 of 29 kcal/mol (relative to the reactant) and adiabatically leads the CT2 product or a weakly bound intermediate Int1 between CT2 products. This transition state TS1 is caused by the avoided crossing between the reactant and CT2 electronic states. As the C-O distance becomes shorter beyond the above intermediate, the C1 reaction pathway is energetically more favorable than the Cs pathway and goes over the second transition state TS2 of a relative energy of 39 kcal/mol. Although this TS connects diabatically to the covalent intermediate Int2, there are many states that interact adiabatically with this diabatic state and these lead to the other charge-transfer product CT1 via either of several nonadiabatic transitions. These findings are consistent with the experiment, in which charge transfer and chemical reaction products are detected above 35 and 39 kcal/mol collision energies, respectively.  相似文献   

18.
The title unknown reaction is theoretically studied at various levels to probe the interaction mechanism between the ethynyl radical (HC triple bond C) and formaldehyde (H(2)C double bond O). The most feasible pathway is a barrier-free direct H-abstraction process leading to acetylene and formyl radical (C(2)H(2)+HCO) via a weakly bound complex, and then the product can take secondary dissociation to the final product C(2)H(2)+CO+H. The C-addition channel leading to propynal plus H-atom (HCCCHO+H) has the barrier of only 3.6, 2.9, and 2.1 kcal/mol at the CCSD(T)/6-311+G(3df,2p)MP2//6-311G(d,p)+ZPVE, CCSD(T)/6-311+G(3df,2p)//QCISD/6-311G(d,p)+ZPVE, and G3//MP2 levels, respectively [CCSD(T)--coupled cluster with single, double, and triple excitations; ZPVE--zero-point vibrational energy; QCISD--quadratic configuration interaction with single and double excitations; G3//MP2-Gaussian-3 based on Moller-Plesset geometry]. The O addition also leading to propynal plus H atom needs to overcome a higher barrier of 5.3, 8.7, and 3.0 kcalmol at the three corresponding levels. The title no-barrier reaction presents a new efficient route to remove the pollutant H(2)CO, and should be included in the combustion models of hydrocarbons. It may also represent the fastest radical-H(2)CO reaction among the available theoretical data. Moreover, it could play an important role in the interstellar chemistry where the zero- or minute-barrier reactions are generally favored. Discussions are also made on the possible formation of the intriguing propynal in space via the title reaction on ice surface.  相似文献   

19.
We present quasiclassical dynamics calculations of H2 and D2 scattering by the NiAl(110) surface using a recently proposed six-dimensional potential-energy surface (PES) obtained from density-functional theory calculations. The results for dissociative adsorption confirm several experimental predictions using (rotationally hot) D2 beams, namely, the existence of a dissociation barrier, the small isotopic effect, the importance of vibrational enhancement, and the existence of normal energy scaling. The latter conclusion shows that normal energy scaling is not necessarily associated with weak corrugated surfaces. The results for rotationally elastic and inelastic diffractions are also in reasonable agreement with experiment, but they show that many more diffractive transitions are responsible for the observed structures than previously assumed. This points to the validity of the PES recently proposed [P. Riviere, H. F. Busnengo, and F. Martin, J. Chem. Phys. 121, 751 (2004)] to describe dissociative adsorption as well as rotationally elastic and inelastic diffractions in the H2NiAl(110) system.  相似文献   

20.
The potential energy surface (PES) for the HOBr.H(2)O complex has been investigated using second- and fourth-order M?ller-Plesset perturbation theory (MP2, MP4) and coupled cluster theory with single and doubles excitations (CCSD), and a perturbative approximation of triple excitations (CCSD-T), correlated ab initio levels of theory employing basis sets of triple zeta quality with polarization and diffuse functions up to the 6-311++G(3dp,3df ) standard Pople's basis set. Six stationary points being three minima, two first-order transition state (TS) structures and one second-order TS were located on the PES. The global minimum syn and the anti equilibrium structure are virtually degenerated [DeltaE(ele-nuc) approximately 0.3 kcal mol(-1), CCSD-T/6-311++G(3df,3pd) value], with the third minima being approximately 4 kcal mol(-1) away. IRC analysis was performed to confirm the correct connectivity of the two first-order TS structures. The CCSD-T/6-311++G(3df,3pd)//MP2/6-311G(d,p) barrier for the syn<-->anti interconversion is 0.3 kcal mol(-1), indicating that a mixture of the syn and anti forms of the HOBr.H(2)O complex is likely to exist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号