首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microencapsulation of n-Eicosane as Energy Storage Material   总被引:1,自引:0,他引:1  
For heat energy storage application, polynrea microcapsules containing phase change material, n-eicosane, were synthesized by using interfacial polymerization method with toluene-2,4-diisocyanate (TDI) and diethylenetriamine(DETA) as monomers in an emulsion system. Poly(ethylene glycol)octyl-phenyl ether (OP), a nonionic surfactant,was the emulsifier for the system. The experimental result indicates that TDI was reacted with DETA in a mass ratio of 3 to 1. FF-IR spectra confirm the formation of wall material, polyurea, from the two monomers, TDI and DETA.Encapsulation efficiency of n-eicosane is about 75%. Microcapsule of n-eicosane melts at a temperature close to that of n-eicosane, while its stored heat energy varies with core material n-eicosane when wall material fixed.Thermo-gravimetric analysis shows that core material n-eicosane, micro-n-eicosane and wall material polyurea can withstand temperatures up to 130, 170 and 250℃, respectively.  相似文献   

2.
界面聚合法制备正二十烷微胶囊化相变储热材料   总被引:5,自引:0,他引:5  
采用界面聚合的方法, 以甲苯鄄2,4-二异氰酸酯(TDI)和乙二胺(EDA)为反应单体, 非离子表面活性剂聚乙二醇壬基苯基醚(OP)为乳化剂, 合成了正二十烷为相变材料的聚脲包覆微胶囊. 结果表明, 二异氰酸酯和乙二胺按质量比1.9:1 进行反应. 以透射电镜和激光粒度分析仪分析微胶囊, 测得空心微胶囊直径约为0.2 μm, 含正二十烷微胶囊约为2-6 μm. 红外光谱分析证明, 壁材料聚脲是由TDI 及EDA 两种单体形成的. 正二十烷的包裹效率约为75%. 微胶囊的熔点接近囊芯二十烷的熔点, 而其储热量在壁材固定时随囊芯的量而变. 热重分析表明, 囊芯正二十烷、含正二十烷的微胶囊以及壁材料聚脲, 能够耐受的温度分别约为130 ℃、170 ℃及270 ℃.  相似文献   

3.
正十六烷聚脲微胶囊化相变材料   总被引:17,自引:0,他引:17  
用界面聚合法,合成了直径大约2.5 μm可用于热能储存含相变材料的聚脲包覆微胶囊.在含乳化剂的水溶液中,将溶有芯材正十六烷的有机相乳化成微米级油性液滴,随后加入的水溶性单体二胺与甲苯2,4-二异氰酸酯在胶束界面相互反应形成囊壁.分别用乙烯二胺,1,6-己二胺和它们的混合物作为水溶性单体进行了研究.并用红外光谱和热分析分别考察了不同胺类对微胶囊化学结构和热性质的影响.红外谱图显示合成了聚脲微胶囊,热重曲线表明含正十六烷的聚脲微胶囊能够耐受大约300 ℃高温,差示扫描量热测试表明所有样品均具有合适的相转变热,冷热循环实验揭示微胶囊能够维持储热容量不衰减.研究表明微胶囊化的正十六烷作为相变储热材料具有良好的应用前景.  相似文献   

4.
采用乳液聚合的方法,分别选取聚苯乙烯(PS)、聚甲基丙烯酸甲酯(PMMA)或苯乙烯和甲基丙烯酸甲酯的共聚物为壁材,正十八烷为芯材,十二烷基苯磺酸钠(SDBS)为乳化剂,制作相变储能微胶囊。用粒径分析仪、透射电子显微镜(TEM)、热重分析仪(TG)和示差扫描量热测试仪(DSC)对微胶囊的形貌、相变热性能和热稳定性分别进行表征。结果表明:壁材选取两者共聚物,当两种单体的比例为St∶MMA=1∶5,SDBS用量为1.5g(总质量的3%)时,微胶囊粒径大小均匀,粒子分散性好,壁材的包裹性好。微胶囊的放热峰为起始温度为27.3℃,终止温度为31.9℃,相变温度为28.9℃,相变焓为48.4J/g。TG表明长期使用温度不能超过131℃。IR分析微胶囊中含有芯材和壁材。这种十八烷/聚(St-MMA)相变微胶囊可以用于诸能材料。  相似文献   

5.
Microcapsules containing healing agents have been used to develop the self-healing polymeric composites. These microcapsules must possess special properties such as appropriate strength and stability in surrounding medium. A new series of microcapsules containing dicyclopentadiene (DCPD) with melamine–formaldehyde (MF) resin as shell material were synthesized by in situ polymerization technology. These microcapsules may satisfy the requirements for self-healing polymeric composites. The chemical structure of microcapsule was identified by using Fourier transform infrared (FTIR) spectrometer. The morphology of microcapsule was observed by using optical microscope (OM) and scanning electron microscope. Size distribution and mean diameter of microcapsules were determined with OM. The thermal properties of microcapsules were investigated by using thermogravimetric analysis and differential scanning calorimetry. Additionally, the self-healing efficiency was evaluated. The results indicate that the poly(melamine–formaldehyde) (PMF) microcapsules containing DCPD have been synthesized successfully, and their mean diameters fall in the range of 65.2∼202.0 μm when the adjusting agitation rate varies from 150 to 500 rpm. Increasing the surfactant concentration can decrease the diameters of microcapsules. The prepared microcapsules are thermally stable up to 69 °C. The PMF microcapsules containing DCPD can be applied to polymeric composites to fabricate the self-healing composites.  相似文献   

6.
The sol–gel synthesis strategies combined with the templated growth of organic–inorganic hybrid networks provide access to an immense new area of innovative multi-functional advanced materials. One possible way to prepare such new advanced materials is to encapsulate liquid active agents (such as monomers, dyes, catalysts and hardeners) in microcapsules. Silica microcapsules of tetraethylortosilicate (TEOS) and 3-(trimethoxysilyl)propyl methacrylate (MPTS) were prepared in a precursor-monomer/NH4OH water microemulsion system. Trimethylolpropane triacrylate (TMPTA)—a trifunctional monomer useful in manufacturing of coatings, inks and adhesives—and a corresponding photoinitiator (DAROCUR 1173) were entrapped inside the obtained microcapsules. MPTS was used to increase compatibility between TMPTA and the sol–gel precursors. As stability agent we added a “home made” product resulted from functionalization of poly (ethylene glycol) methyl ether (MPEG) with (3-isocyanatopropyl) triethoxysilane (NCOTEOS). Were obtained microcapsules containing incorporated monomer and having average particle size in range of 0.5–50 μm. Thermal analysis, morphology study and the increase of the silica microcapsules average diameter, measured by DLS technique confirm the monomer encapsulation.  相似文献   

7.
Microencapsulation of styrene with melamine-formaldehyde resin   总被引:1,自引:0,他引:1  
Melamine-formaldehyde (MF) resin-walled microcapsules containing styrene were prepared by in situ polymerization in an oil-in-water emulsion. In response to the characteristics of styrene (i.e., high volatility, non-polarity, low molecular weight, and low viscosity), the synthesis method was improved by optimizing the reaction conditions accordingly. It was found that utilization of macromolecular emulsifier of lower molecular weight, moderate dispersion rate, and higher feeding weight ratio of core/shell monomers is critical for the fast formation of capsules’ wall. The highest loading of styrene in the resultant microcapsules can be about 60%, and mean diameter of the capsules fell in the range of 20∼71 μm, which can be adjusted by changing processing parameters. It is believed that the present work provides a feasible approach to encapsulate monomers for manufacturing polyester based self-healing composites.  相似文献   

8.
Liquid crystals (LCs) encapsulated in monodisperse micron-sized polymer particles were prepared to control the size and size distribution of LC droplets in polymer-dispersed LCs. The poly(methyl methacrylate) (PMMA) seed particles were swollen with the mixture of liquid crystal, monomers (methyl methacrylate and styrene) and initiator by using a diffusion-controlled swelling method. A single LC domain was produced by the phase separation between PMMA and LC through polymerization. The optical microscopy and scanning electron microscopy showed that the particles are highly monodisperse with core–shell structure. Moreover, monodisperse LC core domains were confirmed from polarized optical microscope observations. The final particle morphology was influenced by the cross-linking of the seed particle. When linear PMMA particles, which are not cross-linked, were used as a seed, the microcapsules were distorted after annealing for a few days; however, in the case of cross-linked PMMA particles, the core–shell structure was sustained stably after annealing. Received: 22 November 2000 Accepted: 12 March 2001  相似文献   

9.
Using helicid as starting material, E-4-β-D-allopyranoside-cinnamic-4-substituted phenylketones (1a–1h) containing the structure of chalcones were synthesized; then these chalcones were reacted with guanidine hydrochloride through a 1,4-Michael reaction, giving 2-amino-4-(4-β-D-allopyranoside-phenyl)-6-3(4)substituted phenylpyrimidines (2a–2h), which were characterized by IR, 1H NMR, and HR-MS. The target compounds were evaluated by the spontaneous locomotor activity test, showing that all of them had good calming activity; compound 2f was found to have the greatest.  相似文献   

10.
A series of heat energy storage microcapsules was prepared using melamine-formaldehyde resin as the shell material and the mechanical properties of the shell were investigated. A phase change material whose melting point was 24 °C was used as core and the quantity of heat involved in phase transition was 225.5 J/g. Average diameter of the microcapsules varied from 5 to 10 μm, and the globular surface was smooth and compact. The mechanical properties of the shell were evaluated by observing the surface morphological structure change after application of pressure by means of scanning electron microscopy. When the mass ratio of the core and shell material is 3:1, a yield point of about 1.1×105 Pa was found and when the compression was increased beyond this point the microcapsules showed plastic behavior. This has been attributed to the cross-link density and to the high degree of reaction of the shell material. Different yield points subsequently reflected differences in the mechanical behavior. It was also found that the mechanical intensity of double-shell microcapsules was better than that of single shelled ones.  相似文献   

11.
In this work urea-formaldehyde microcapsules containing an epoxy resin are prepared by in situ polymerization of monomers in an oil-in-water emulsion. Scanning electronic microscopy (SEM) was performed to investigate on microcapsule size and surface morphology. Calorimetric and spectroscopic analyses were carried out with the aim of evaluate the encapsulation yield and the shell features. Factors determining the microencapsulability of the core material were described. In particular, our interest was devoted to a better understanding of the influence of the reaction parameters on the microcapsule properties. It was found that the encapsulation yield as well as the extent of urea-formaldehyde polymerization depends on the reaction temperature and the stirring speed.  相似文献   

12.
7-Hydroxy-3-phenoxy-8-formylchromones were synthesized using the Duff reaction and were reacted with 2,4-dinitrophenylhydrazine to produce hydrazones and with an excess of hydrazine hydrate to produce the pyrazole recyclization products. Derivatives of α-pyrono[2,3-f]chromones were synthesized using the Knoevenagel condensation with 2-azahetarylacetonitriles and the Perkin reaction. Translated from Khimiya Prirodnykh Soedinenii, No. 3, pp. 298–302, May–June, 2009.  相似文献   

13.
 The preparation of polymer microcapsules of well defined size in the range of 10–50 μm with different shell thickness to core diameter ratios is described. An aerosol of monodisperse droplets of a homogeneous ternary liquid system which contained a hydrophobic component and a hydrophilic component dissolved in a high-volatile mutual solvent, was produced by dispersing with a vibrating-orifice aerosol generator. After the evaporation of the solvent in a nitrogen atmosphere the particles demix and form a two-phase droplet of core-shell type. These droplets were illuminated with UV light and polymerized to highly monodisperse microcapsules with a solid polymer shell and a liquid core. The properties of the resulting particles (size, size distribution, shell thickness, shape and surface characteristics) were investigated by scanning electron microscopy, Raman spectroscopy on single optically levitated particles, and confocal Raman micro spectroscopy. The microcapsules were highly monodisperse and have spherical shape. Received: 24 July 1996 Accepted: 29 August 1996  相似文献   

14.
 An overlap criterion is defined that connects the identification of core orbitals in a molecular system, which can be problematic, to that in isolated atoms, which is well defined. This approach has been tested on a variety of troublesome systems that have been identified in the literature, including molecules containing third-row main-group elements, and is shown to remove errors of up to 100 kcal/mol arising from an inconsistent treatment of core orbitals at different locations on a potential-energy surface. For some systems and choices of core orbitals, errors as large as 19 kcal/mol can be introduced even when consistent sets of orbitals are frozen, and the new method is shown to identify these cases of substantial core–valence mixing. Finally, even when there is limited core–valence mixing, the frozen-core approximation can introduce errors of more than 5 kcal/mol, which is much larger than the presumed accuracy of models such as G2 and CBS-QB3. The source of these errors includes interatomic core–core and core–valence dispersion forces. Received: 31 August 2001 / Accepted: 11 October 2001 / Published online: 9 January 2002  相似文献   

15.
A series of chlorins containing a vinyl group on the periphery of the chlorin ring that was attached by linkers of various length, potential monomers for synthesis of polymers containing chlorin via copolymerization, was synthesized from methylpheophorbide a. __________ Translated from Khimiya Prirodnykh Soedinenii, No. 2, pp. 163–166, March–April, 2007.  相似文献   

16.
Milled corncob samples were mixed with water and heated to obtain a liquid phase containing oligosaccharides, sugars, and acetic acid as main reaction products (autohydrolysis reaction). To hydrolyze the sugar oligomers to the correspondent monomers, sulfuric acid was added to the autohydrolysis liquors to reach 0.5–2 wt% of solution, and the reaction media were heated at 101.5–135°C. With this operational procedure, sugar solutions suitable as fermentation media (containing xylose as the major component) were obtained. The kinetics of the posthydrolysis step was characterized on the basis of experimental data concerning the time courses of the concentrations of xylooligosaccharides, xylose, furfural, and acetic acid. The concentrations of other reaction byproducts (glucose or arabinose) were also measured.  相似文献   

17.
A series of segmented poly(L-lactide)-polyurethanes (PLA-PUs) were synthesized by a two-step method, with oligo-poly(L-lactide) (PLA) as the soft segments and the reaction product of 2,4-toluene diisocyanate (TDI) and ethylene glycol (EG) as the hard segments. The shape-memory properties and biocompatibility of PLA-PUs were examined. The 50% compressed PLA-PUs could recover almost 100% to their original shape within 10°C from the lowest recovery temperature (22°C–37°C). In the recovery process the PLA-PU showed a maximum contracting stress in the range of 1.5–4 MPa. Cell incubation experiments show that PLA-PU has biocompatibility comparable to that of pure PLA. Therefore, this kind of polyurethane can be used for implanted medical devices with shape memory requirements. __________ Translated from Chemical Journal of Chinese Universities, 2007, 28(2): 371–375 [译自: 高等学校化学学报]  相似文献   

18.
Microcapsules containing phase change materials (microPCMs) have many potential applications because of their thermoregulation or thermosaving abilities. At the same time, it is still essential to understand the interface stability of microPCMs/polymer composites during a thermal transmission. The aim of this work was to fabricate novel microPCMs containing dodecanol by an in situ polymerization using methanol-modified melamine–formaldehyde (MMF) prepolymer as shell material and investigate the interface morphologies of microPCMs/epoxy composites treated by a simulant thermal process with a ten times repeated temperature variation. A series of microPCMs were fabricated by 1,000–3,000 r·min−1 emulsion speed with the PCM contents of 40–70%. The average diameter, melting temperature, and encapsulation efficiency of microPCMs were 1–16 μm, 19.5 °C, and 97.4%, respectively. Tests results indicated that the properties of the microPCMs were greatly affected by core/shell ratios and emulsification stirring rates of preparation conditions. With the increasing of stirring rates, the average diameters of microPCMs were sharply decreased. The encapsulation efficiency (E e) values of microPCMs increased with the increasing of stirring rates. The contents of PCM in microcapsules (C t) and the average diameter of microPCMs both affected the interface morphologies of microPCMs/epoxy composites after the repeated thermal treatments. Microcracks and gaps occurred after a thermal treatment in the interface of microPCMs and epoxy matrix obviously. The internal stress generated by the expansion or shrinking of the microPCMs was the main factor leading to the interface morphology changes and damaged of composites.  相似文献   

19.
Microencapsulated n-octadecane with melamine–formaldehyde resin (MF) shell was synthesized by in situ polymerization. Ammonium chloride was used to reduce the residual formaldehyde content of microencapsulated phase change materials (microPCMs) caused by the inherent characteristics of MF. Moreover, microPCMs were heat-treated at 160 °C for 30 min. The surface morphology of the microPCMs fabricated at various microencapsulation periods was examined, and the shell thickness was measured. The effects of heat treatment on the surface morphology, residual formaldehyde content, phase change properties, and thermal stability of the microcapsules were systematically investigated. The globular surface of microcapsules fabricated at microencapsulation period of 120 min was smooth and compact with an average diameter about 2.2 μm, and the shell thickness was ranged from 30 to 70 nm. The thermal stability of heat-treated microcapsules enhanced significantly as microencapsulation period increased; in addition, the residual formaldehyde content of microcapsules decreased from 125 ± 1 mg/kg to 19 ± 1 mg/kg.  相似文献   

20.
分别以甲苯-2,4-二异氰酸酯(TDI)和异佛尔酮二异氰酸酯(IPDI)为单体,通过原位聚合法制备了离子液体@聚脲(PU)微胶囊,并与环氧树脂共混制得环氧树脂复合材料.利用扫描电子显微镜分析了微胶囊及复合材料的表面形貌,通过电子万能试验机和摩擦磨损试验机探究了微胶囊改性复合材料在不同情况下的力学性能和摩擦学性能,用傅里叶变换红外光谱对微胶囊进行表征.分析结果表明,以IPDI为单体合成的微胶囊摩擦学性能更加优异,并且随着微胶囊用量的增加,复合材料的摩擦学性能有明显提高,当微胶囊添加质量分数为20%时,含有微胶囊的复合材料具有较低的滑动摩擦系数并且摩擦面较光滑,这是由于在实验过程中,随着微胶囊壁材的破损,芯材离子液体被释放,形成了一层致密的润滑膜.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号