首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hydrodistilled essential oils of the leaves and twigs of Litsea mushaensis and L. linii were analyzed. Sixty-nine and ninety compounds were identified in the leaf and twig oils, respectively, of L. mushaensis. The main components of the leaf oil were beta-eudesmol (24.2%), tau-cadinol (10.2%), alpha-humulene (10.1%), alpha-pinene (9.7%), and trans-beta-ocimene (6.5%), whereas the main components of the twig oil were trans-beta-ocimene (19.5%), alpha-pinene (12.8%) and cis-beta-ocimene (7.7%). With L. linii, 72 and 78 compounds were respectively identified in the leaf and twig oils. The main components of the leaf oil were beta-selinene (15.7%), alpha-selinene (15.5%), beta-caryophyllene (12.2%), alpha-humulene (7.2%), and delta-cadinene (5.6%), and of the twig oil trans-beta-ocimene (20.8%), beta-selinene (11.4%), alpha-cadinol (6.0%), delta-cadinene (5.8%), tau-cadinol (5.4%) and beta-eudesmol (5.2%). L. mushaensis leaf oil was shown to have excellent antimicrobial and anti-wood-decay fungal activity, superior to the other oils.  相似文献   

2.
The chemical composition, and antimicrobial and anti-wood-decay fungal activities of the essential oils isolated from the leaves and twigs of Litsea acutivena of Taiwan were investigated. The essential oils from the fresh leaves and twigs were isolated using hydrodistillation in a Clevenger-type apparatus, and characterized by GC-FID and GC-MS. Ninety-five and fifty-two compounds were identified in the leaf and twig oils, respectively. The main components of the leaf oil were gamma-patchoulene (11.0%), delta-cadinene (6.3%), trans-muurola-3,5-diene (5.9%), and beta-selinene (5.3%), whereas the main components of the twig oil were tau-cadinol (13.1%), beta-selinene (9.6%), trans-beta-ocimene (6.2%) and alpha-cadinol (7.7%). Bioactivity studies demonstrated that twig oil had excellent antimicrobial and anti-wood-decay fungal activities, superior to those of the leaf oil. For the antimicrobial and anti-wood-decay fungal activities of the twig oil, the active compounds were determined to be tau-cadinol and alpha-cadinol.  相似文献   

3.
The chemical constituents from the flower, leaf and stem of Helichrysum armenium DC. (Asteraceae) growing in Iran were obtained by hydrodistillation and analyzed by GC and GC/MS. The oil of flower was characterized by higher amount of limonene (21.2%), alpha-cadinol (18.2%), borneol (11.9%), delta-cadinene (9.0%), bornyl acetate (8.0%) and alpha-humulene (7.3%). Twenty one constituents representing 96.2% of the chromatographical leaf oil were identified of which limonene (29.2%), alpha-pinene (14.4%), caryophyllene oxide (6.5%), alpha-gurjunene (6.3%), bornyl acetate (5.5%) and torreyol (5.2%) were the major components. The main components of the stem oil were limonene (23.6%), alpha-pinene (13.4%), spathulenol (6.4%), alpha-gurjunene (6.3%), caryophyllene oxide (5.3%), bornyl acetate (5.2%), beta-cubebene (4.8%) and delta-cadinene (4.3%). The composition of the oils is different, although the most abundant components are identical in leaf oil (96.2%). The antimicrobial effect of flower, leaf and stem essential oils from Helichrysum armenium was studied according to the agar diffusion cup method. The essential oils had a moderate effect on the Gram-positive and Gram-negative bacteria and had a substantial fungicidal effect on the fungi under study.  相似文献   

4.
The volatile constituents from flower, leaf and stem of Gypsophila bicolor growing in Iran were obtained by hydrodistillation and analyzed by GC and GC/MS. The flower oil was characterized by high amounts of germacrene-D (21.2%), p-cymene (20.6%), bicyclogermacrene (17.6%), gamma-dodecadienolactone (13.7%) and terpinolene (9.4%). Twenty-four constituents representing 97.4% of the leaf oil were identified of which germacrene-D (23.4%), terpinolene (14.5%), bicyclogermacrene (7.5%), gamma-dodecadienolactone (6.8%), p-cymene (6.7%) and cis-beta-ocimene (6.3%) were major components. The main components of the stem oil were gamma-dodecadienolactone (28.5%), bicyclogermacrene (14.8%), germacrene-D (12.6%), p-cymene (12.5%), terpinolene (11.6%) and trans-beta-ocimene (4.2%). The antimicrobial effects of flower, leaf and stem essential oils from Gypsophila bicolor were studied according to the agar diffusion cup method. The essential oils had a moderate effect on the Gram-positive and Gram-negative bacteria, but had a substantial effect on the fungi studied.  相似文献   

5.
The composition of essential oil from Telekia speciosa leaves, flowers, roots, stems and in vitro regenerated shoots was studied by GC-MS-FID leading to the determination of 112 compounds. The qualitative composition of the essential oil from the examined plant material was similar, whereas quantities of individual components of the oils varied widely depending on the kind of plant material. The most striking differences were observed between the oils produced by aerial and underground parts of the intact plant, as well as between oils produced by in vitro grown shoots and leaves of the intact plant. The main volatiles of leaf essential oil were: (E,E)-famesol (21.2%) and (E)-nerolidol (17.9%), while isoalantolactone was the predominant component of the root (62.3%) and flower oils (23.0%). Numerous thymol derivatives were also found, among them 10-isobutyryloxy-8,9-epoxythymol isobutyrate, which was one of the main components found in the flower oil (20.5%) and that from the in vitro cultures (20.2%).  相似文献   

6.
Hydrodistilled volatile oils from crushed dry stems, leaves, and roots of Prangos latiloba Korov. (Umbelliferae) growing wild in Sabzevar (Iran) were analyzed by GC and GC/MS. Eight compounds constituting 84.72% of stem oil, twelve compounds constituting 95.39% of leaf oil, and nine compounds constituting 88.73% of root oil have been identified. The main components of stem oil were γ-cadinene (30.39%), α-pinene (25.47%), and sabinene (12.55%). The main components of leaf oil were germacrene D (27.79%), α-pinene (17.81%), β-caryophyllene (12.75%), and β-pinene (11.23%). The main components of root oil were spathulenol (29.5%), 1,8-cineol (19.42%), p-cymene (17.03%), and α-bisabolol (15.33%). __________ Published in Kimiya Prirodnikh Soedinenii, No. 5, pp. 443–444, September–October, 2005.  相似文献   

7.
The essential oils from bark and leaves of Cedrelopsis grevei Baill (Ptaeroxylaceae), an aromatic and medicinal plant from Madagascar, are widely used in folk medicine. These two commercially available oils have been examined separately by means of GC-MS. The oil constituents were identified according to their mass spectra and their relative retention indices determined on both polar and non-polar stationary phase capillary columns. A total of 55 compounds have been identified constituting 76.7% (bark) and 91.6% (leaves) of the volatile constituents. Both oils were found to have a similar composition; however the relative percentages of some compounds notably differed. The bark essential oil contained beta-pinene (17.1%), cis-sesquisabinene hydrate (12.8%) and caryophyllene oxide (7.0%) as the main components whereas the leaf essential oil was largely dominated by trans-beta-farnesene (35.6%); beta-pinene (12.8%), cis-sesquisabinene hydrate (9.8%) and ar-curcumene (8.6%) were also present as major components. As far as we know, this is the first report on the Cedrelopsis grevei bark and leaf essential oils which therapeutic properties may be attractive for aromatherapy.  相似文献   

8.
Water-distilled essential oils from leaves of Hymenocrater yazdianus Rech.f., flowers of Stachys obtusicrena Boiss., and stems and flowers of Nepeta asterotricha Rech.f., which are endemic to Iran, were analyzed by GC and GC/MS. Fifty-five components of the leaf oil of H. yazdianus were characterized, representing 95.1% of the total components detected. The major constituents were identified as 1,8-cineole (17.6%), beta-caryophyllene (13.9%), alpha-pinene (10.6%) and caryophyllene oxide (10.4%). Germacrene-D (37.5%) and alpha-bisabolol (23.5%) were the main components among the twenty constituents characterized in the flower oil of S. obtusicrena, representing 90.8% of the total components detected. Thirty-five compounds representing 93.0% of the stem oil of N. asterotrica were identified among which terpinen-4-ol (22.8%) and gamma-terpinene (14.1%) were the major ones. The flower oil of the species was characterized by higher amounts of terpinen-4-ol (24.8%), 4a alpha, 7a beta-nepetalactone (18.2%) and 1,8-cineole (11.6%) among the thirty-three components comprising 98.5% of the total oil detected. The antibacterial activity of the stem, leaf and flower oils of Hymenocrater yazdianus, Stachys obtusicrena and Nepeta asterotricha against seven Gram-positive and Gram-negative bacteria were determined using the MIC method. The growth inhibitory zone (mm) was also measured.  相似文献   

9.
卫强  刘洁 《应用化学》2016,33(6):719-726
研究了大叶黄杨叶、茎、果挥发油的化学成分及抗病毒活性。 采用超临界二氧化碳萃取,应用气相色谱-质谱联用(GC-MS) 法鉴定挥发油化学成分,考察体外抗病毒作用。 共鉴定133个化合物,大叶黄杨叶挥发油中主要有2-乙氧丙烷(41.92%)、(E)-2-己烯-1-醇(17.8%)、 (E)-香叶醇(7.86%)、甲基环己烷(6.60%)等;大叶黄杨茎挥发油中主要有甲氧基苯基肟(33.10%)、二十八烷(14.34%)、α-甲基-α-[4-甲基-3-戊烯基]环氧乙烷甲醇(12.48%)、甲苯(11.88%)、二十一烷(7.74%) 等;大叶黄杨果挥发油中主要有苯甲醛(15.52%)、甲苯(15.03%)、甲基环己烷(14.76%)、(Z)-3-己烯-1-醇(10.98%)等。 大叶黄杨叶、茎、果的环己烷、乙醚萃取挥发油对特定病毒有显著抑制效果。 大叶黄杨叶、茎、果中挥发油萃取部位成分差异明显,有特定抗病毒活性。  相似文献   

10.
The essential oils from stems, leaves, inflorescences, and both unripe and ripe infructescences of Smyrnium olusatrum L. (Umbelliferae) collected in Greece were obtained by hydrodistillation and analyzed by GC-FID and GC-MS. Fifty-eight components were identified. Among the samples analyzed, the differences observed were mainly quantitative. All oils were characterized by the abundance of sesquiterpenes. The major components of the stem and leaf oils were furanoeremophil-1-one (54.3% and 28.7%, respectively) and curzerene (18.8%, 29.0%). The main constituents of the inflorescence oil were curzerene (38.1%), germacrone (20.2%) and furanoeremophil-1-one (20.0%), while those of the unripe and ripe infructescence oils were 1beta-acetoxy-furanoeudesm-4(15)-ene (22.1%, 30.8%) and curzerene (29.7%, 17.4%).  相似文献   

11.
Volatile components of essential oils from the leaves and stems of Croton jacobinensis, C. rhamnifolius, C. muscicapa and C. micans, which are medicinal plants found in the Caatinga biome of northeastern Brazil, were analyzed using GC and GC/MS. The acaricidal activity of these oils against Tetranychus urticae was evaluated using the fumigation method. Oil yields from the Croton species ranged from 1.1 +/- 0.0 to 0.6 +/- 0.0%, w/w, for leaves and 0.7 +/- 0.0 to 0.1 +/- 0.0% for stems. Sesquiterpenoids were dominant in all oils, except the stem oil from C. rhamnifolius, which exhibited a high monoterpene content, and the leaf and stem oils from C. muscicapa, which were rich in phenylpropanoids. The major volatile components of the leaf and stem oils from C. jacobinensis were (Z)-alpha-atlantone (24.3 +/- 0.4%) and trans-isolongifolanone (22.8 +/- 0.5%), respectively. The most abundant constituents detected in C. rhamnifolius were alpha-cedrene epoxide (23.3 +/- 0.1%) and caryophyllene oxide (21.9 +/- 0.0%) in the leaf oil, and camphor (16.6 +/- 0.5%) and tricyclene (12.8 +/- 0.1%) in the stem oil. Foenicolin was the main compound identified in the leaf (50.6 +/- 0.2%) and stem (72.7 +/- 0.6%) oils of C. muscicapa, while alpha-bulnesene (32.9 +/- 0.2%) and guaiol (17.9 +/- 0.7%) were the principal components of C. micans oils. These oils exhibited a high degree of toxicity in the fumigation assay. The stem oils from C. jacobinensis and C. rhamnifolius exhibited high lethality rates, with LC50 values of 0.3 and 0.2 microL/L of air after 24 h, respectively. The results suggest the potential use of stem essential oil, especially from C. rhamnifolius and C. jacobinensis, for the integrated control of Tetranychus urticae.  相似文献   

12.
The composition of the essential oils of Cirsium palustre and C. rivulare and their antiproliferative activity against breast adenocarcinoma cells (MCF-7 and MDA-MBA-231) were investigated. The essential oils obtained by hydro-distillation from the roots (yield 0.2 and 0.1% v/w, respectively), leaves and inflorescences (yield below 0.01%), were analyzed by gas chromatography coupled with mass spectrometry (GC-MS). The composition of the essential oils in the respective organs of each plant differed considerably. On the other hand, similarities were observed in the composition of root and leaf oils. In C. palustre and C. rivulare root oil, 50 and 39 constituents were identified, accounting for 95.3% and 92.4% of the total content. The main components were aplotaxene and its derivatives, representing 78.6% and 46.6% of the total content. In leaf oils of both species, 59 and 49 compounds, respectively, were identified, representing 67.4% and 78.3% of the total content. The major constituents were beta-damascenone (4.1% and 13.4%, respectively) and beta-ionone (6.7% and 5.3%, respectively). Short-chain saturated and unsaturated aliphatic alcohols and aldehydes constituted another important group of compounds (17.7% and 9.0%, respectively). The essential oils of the roots have moderate anti-proliferative activity, with IC50 values ranging from 110 to 140 microg/mL. These concentrations were below the level able to inhibit the proliferation of healthy cells.  相似文献   

13.
In this study, antipathogenic activities of the twig essential oil and its constituents from Chamaecyparis formosensis Matsum were evaluated in vitro against six plant pathogenic fungi. The essential oil from the fresh twigs was isolated using hydrodistillation in a Clevenger-type apparatus, and characterized by GC-FID and GC-MS. Twenty-five compounds were identified, representing 98.9% of the oil. The main components were beta-eudesmol (25.1%), tau-muurolol (21.6%), elemol (15.0%), totarol (14.9%), and alpha-cadinol (12.4%). The twig oil (500 mcirog/mL) showed growth inhibitory activity against the phytopathogenic fungi, Fusarium oxysporum, Pestalotiopsis funereal, and Ganoderma austral, with antifungal indices of 92.7%, 71.1%, and 87.7%, respectively. In addition, the oil suppressed totally the growth of Rhizoctonia solani, Colletotrichum gloeosporioides, and Fusarium solani. In order to ascertain the source compounds of these antipathogenic activities, the main components were individually evaluated. Tau-Muurolol and alpha-cadinol exhibited excellent activity against F. oxysporum, R. solani, C. gloeosporioides, and F. solani, with IC50 < 50 microg/mL. These compounds also efficiently inhibited the mycelial growths of P. funereal and G. austral. Thus, alpha-cadinol and tau-muurolol could be considered as potential natural fungicides for controlling fungal pathogens and worth.  相似文献   

14.
The volatile components of fresh leaves and roots from Anthriscus sylvestris (L.) Hoffm., obtained through hydrodistillation, were analysed by GC and GC-MS. This was compared to dichloromethane extracts of both fresh and dried leaf and root material. The monoterpene fraction (69-70%) dominated, while beta-phellandrene (39-45%) was the main component in both the leaf and the root oil. Other components in the leaf oil were beta-myrcene (17%), sabinene (6.2%), Z-beta-ocimene (5.4%) and benzene acetaldehyde (4.1%). In the roots we found Z-beta-ocimene (16.9%) and alpha-pinene (4.6%) as other major components. These principle constituents of both essential oils were also present in the dichloromethane extracts of the fresh and dried leaves and the roots, although in much smaller percentages. Comparing hydrodistillation of fresh plant material with a dichloromethane extract, the latter yielded a considerably lower amount of constituents. In addition, air drying and freeze drying resulted in a significant loss of volatile constituents as compared to fresh material (dichloromethane extract).  相似文献   

15.
The essential oils from fresh aerial parts of Monticalia greenmaniana (Hieron) C. Jeffrey (Asteraceae) collected in March, were analyzed by GC/MS. Oil yields (w/v) of 0.1% (flowers), 0.07%, (stems) and 0.1% (leaves) were obtained by hydrodistillation. Thirteen, sixteen and eighteen components, respectively, were identified by comparison of their mass spectra with those in the Wiley GC-MS Library data base. The major components of the flower and stem oils were 1-nonane (38.8% flowers; 33.5% stems), alpha-pinene (29.0% flowers; 14.8% stems) and germacrene D (15.6% flowers; 18.6% stems). However, in the leaf oil, germacrene D was observed at 50.7%, followed by beta-cedrene at 8.4%. The leaf essential oil showed a broad spectrum of antibacterial activity against the important human pathogenic Gram-positive and Gram-negative bacteria Staphylococcus aureus (ATCC 25923), Enterococcus faecalis (ATCC 19433), Escherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC 27853) and Klebsiella pneumoniae (ATCC 25955) with MIC values ranging from 75 to 6000 ppm.  相似文献   

16.
The antibacterial activity of Dracocephalum polychaetum and D. surmandinum essential oils and two main components were investigated. Essential oils of the plants were analysed by GC and GC-MS. Twenty-three components were characterised in the essential oil of D. polychaetum. The oil was rich in oxygenated (73.1%) and hydrocarbon (25.0%) monoterpenes including perilla aldehyde (63.4 %) and limonene (22.1%) as the major constituents. From 25 identified compounds (97.8%) in the oil of D. surmandinum perilla aldehyde (54.3%) and limonene (30.1%) were the main constituents. The bioassays exhibited that all of the Gram-positive and Gram-negative bacteria tested were highly inhibited in the presence of the oils and main components investigated. The most sensitive microorganism to the oils was found to be Staphylococcus epidermidis with the lowest MIC value of 0.3?mgmL(-1). The resistant Gram-negative Pseudomonas aeruginosa was highly inhibited by the oil of D. polychaetum with MIC value of 2.4?mgmL(-1).  相似文献   

17.
Essential oils obtained from flowers, leaves and stems of Origanum vulgare L. ssp. viride (Boiss.) Hayek., growing wild in Ardabil Province (north-west Iran), were analyzed by GC and GC/MS. beta-Caryophyllene was the major constituent in all three oils (48.1%, 50.1% and 60.2%, respectively). Of the 19 components detected in the flower oil, comprising 96.3% of the total, the major components were 1,8-cineole (11.6%), alpha-pinene (6.9%), and gamma-cadinene (4.8%). 1-Octen-3-ol (23.8%), and 1,8-cineole (8.5%) predominated in the leafoil. In the stem oil, other main constituents were bicyclogermacrene (9.8%), 1,8-cineole (6.4%), borneol (5.1%), and pinocarvone (4.4%). The essential oils were evaluated for their antibacterial activity against 10 selected microorganisms. The data obtained contribute to the future use of certain essential oils as natural preservatives for food products, due to their safety and positive effect on shelf life.  相似文献   

18.
The chemical compositions of the essential oils obtained by hydrodistillation from the aerial parts of Scutellaria diffusa, Scutellaria heterophylla and Scutellaria salviifolia were separately identified simultaneously by gas chromatography and gas chromatography-mass spectrometry. The main components were determined as hexadecanoic acid (30%) and caryophyllene oxide (9%) in the oil of S. diffusa. Germacrene D (21%), hexadecanoic acid (16%) and β-caryophyllene (13%) were found as major components in the oil of S. heterophylla. The main components of the oil of S. salviifolia were germacrene D (40%), bicyclogermacrene (14%) and β-caryophyllene (11%). Overall, individually 63, 68 and 43 constituents were identified in the aerial parts of S. diffusa, S. heterophylla and S. salviifolia essential oils representing 92.1%, 89.9% and 90% of the total, respectively.  相似文献   

19.
The leaf essential oils of Zanthoxylum rhoifolium and Zanthoxylum setulosum (Rutaceae) from Monteverde, Costa Rica have been obtained by hydrodistillation and analyzed by gas chromatography-mass spectrometry. The principal constituents of Z. rhoifolium leaf oil were germacrene D (14.6%), limonene (12.5%), trans-2-hexenal (11.3%), beta-elemene (9.2%), 2-undecanone (9.2%), myrcene (7.9%), bicyclogermacrene (7.5%), and germacrene A (5.2%). The leaf oil of Z. setulosum was composed largely of beta-phellandrene (37.5%), beta-caryophyllene (13.7%), alpha-pinene (11.9%), germacrene D (10.9%), myrcene (5.9%), and nerolidol (5.4%). The essential oils were screened for in-vitro cytotoxic activity against Hep G2, MCF-7, and PC-3 human tumor cell lines; antibacterial activity against Bacillus cereus, Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli; and for Artemia salina (brine shrimp) lethality. Neither Z. rhoifolium nor Z. setulosum leaf oils exhibited cytotoxicity or antibacterial activity. Both oils showed activity against A. salina.  相似文献   

20.
The composition of the essential oils from rootstock of Cimicifuga simplex has been investigated by capillary GC and GC/MS. The main components in essential oil were m-acetanisole (27.57%), (E)-cinnamaldehyde (6.84%), paeonol (5.58%), caproic acid (5.07%) and atractylone (3.10%). The oil was characterized by a high content of aromatic components (52.59%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号