首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Ferrocenyliminophosphine 1 and 1,1'-bisferrocenyliminophosphine 2 were easily prepared from the condensation of formylferrocene or 1,1'-diformylferrocene with 2-(diphenylphosphino)aniline.The following reduction of imine group by LiAlH4 led to the formation of the corresponding ferrocenyl amidophosphines 3 and 4.The new ligands 2-4 were well characterized by IR,1H NMR,31P NMR spectra,elemental analysis,and ESI-MS.The catalytic activity of all the ligands with palladium compounds in the Suzuki reaction was evaluated.Ligand 1,in combination with Pd(OAc)2,was found to be the most effective for the Suzuki reaction of aryl bromides with phenylboronic acid.Typically,the use of 0.1%(molar fraction)of Pd(OAc)2/ligand 1 in the presence of two equivalents of K2CO3 as base in toluene at 110 ℃ provided good to excellent yields of the coupled products.  相似文献   

2.
The effect of transition metals (Cr, Mn, Fe, Co and Ni) on the hydrogenation of cinnamaldehyde over Pt/ZrO2 catalysts was studied in ethanol at 343K under 2.0MPa H2 pressure. PtCo/ZrO2 and PtFe/ZrO2 catalysts exhibit high selectivity and activity of hydrogenation for C=O (93.8% at 87.3% conversion and 83.6% at 88.6% conversion, respectively), and PtNi/ZrO2 exhibits high selectivity of hydrogenation for C=C (64.3% at 70.6% conversion). In the presence of trace H2O and NaOH, over the PtNi/ZrO2 (0.4wt%Ni) catalyst the selectivity to hydrocinnamalde hydereaches 90.6% and the conversion of cinnamaldehyde is 90.5%.  相似文献   

3.
Five novel chiral ferrocenyl amino alcohols were prepared from natural amino acids and used as catalysts in the asymmetric reduction of prochiral ketones with NaBH4/I2 combination.The incorporation of the ferrocenyl moiety into the molecule of the chiral amino alcohols greatly improved their enantioselectivity in the catalysis.The optically active secondary alcohols were obt5ained in moderate to good enantiomeric excesses and high chemical yields.  相似文献   

4.
The surface of nano-TiO2 was encapsulated with hydroxyl-propyl-methyl cellulose (HPMC), and then cografted with acrylates. Conditions of absorbing and grafting have been studied. Modified nano-TiO2 particles were characterized by FT-IR spectra, TEM and TG analysis. It was convinced from FT-IR studies that both methyl methacrylate (MMA) and butylmethacrylate (BMA) were co-grafted onto the surface of nano-TiO2 particles. TEM images show that the surface of nano-TiO2 particles was successfully modified by a thick layer of film-like polymer. TG results demonstrate that the decomposition temperature of HPMC-g-PMMA/PBMA, which has been grafted onto the surface of nano-TiO2, is 56.9 K higher than that of HPMC-g-PMMA/PBMA.  相似文献   

5.
Polymerization of three cyclic ketene acetals: i.e., 5,6-benzo-2-methylene-1,3-dioxepane (BMDO), 2-methylene-4-phenyl-1,3-dioxolane (MPDO) and 4, 7-dimethyl-2-methylene-1, 3-dioxepane(DMMDO) were carried out in the presence ofethyl α-bromobutyrate/CuBr/2, 2'-bipyridine respectively. The structures of poly(BMDO), poly(MPDO) and poly(DMMDO)were characterized by ~1H and ~(13)C-NMR spectra. The effects of monomer structure on the behavior of atom transfer freeradical ring-opening polymerization were investigated and the mechanism of controlled free radical ring-openingpolymerization was discussed.  相似文献   

6.
The title tetranuclear complex,(μ4-oxo)-hexakis(μ2-chloro)-tetrakis(2-amino-1,3-thiazole-N)-tetra-copper(ii) [Cu4(μ4-O)(μ-Cl)6L4](1,L=2-amino-1,3-thiazole) was synthesized by the reaction of CuCl2·2H2O with 2-amino-1,3-thiazole in methanol and characterized by IR spectra and X-ray diffraction.Complex 1 crystallizes in triclinic,space group P1 with a=9.7137(2),b=10.7005(2),c=14.6505(2),α=83.9550(10),β=82.0930(10),γ=67.1640(10)°,V=1387.84(4)3,Mr=883.43,Z=2,μ=3.927 mm-1,Dc=2.1144 g/cm3,F(000)=868,R=0.0332 and wR=0.0814.The complex contains a tetrahedron of four CuII atoms coordinating to a central μ4-O atom,with the six edges of the tetrahedron bridged by six Cl atoms.The Cu-O bond distances range from 1.910(2) to 1.918(2),Cu-Cl from 2.3501(11) to 2.5924(10),and Cu-Cu from 3.1003(6) to 3.1663(6).The coordination geometries of the four coppers distort from trigonal bipramid to tetragonal pyramid with different distortion factors.The free animo groups of the ligands result in a lot of N-H···Cl and N-H···N intra-and intermolecular hydrogen bonds.  相似文献   

7.
a-Oxo ketene dithioacetals, methyl 2-(1,3-dithian/dithiolan-2-ylidene)-3-oxobutanoate (2a/2b) prepared in nearly quantitative yields simply from methyl acetylacetate, carbon disulfide and 1,3-dibromopropane/1,2-dibromoethane in the presence of potassium carbonate, were investigated in the thioacetalization with various carbonyl compounds 3. It has been demonstrated that methyl 2-(1,3-dithian-2-ylidene)-3-oxobutanoate (2a) could act as a nonthiolic, odorless and practical thioacetalization reagent. A range of aldehydes and ketones 3 were converted into the corresponding dithioacetals 4 in high yields (up to 91%) in the presence of 2a. Moreover, 2a showed high chemoselectivity between aldehyde and ketone in thioacetalization.  相似文献   

8.
A simple and efficient protocol for the deprotection of dithioacetal,1,3-dithianes and 1,3-dithiolanes has been developed using H2O2-SOC12 reagent system.In addition to the absence of overoxidation products for oxidation-prone substrates,high chemoselectivity, the low cost and availability of the reagents,simplicity of the method,short reaction times,and excellent yields can also be considered as strong points for this method.  相似文献   

9.
ZnO-CeO2/SBA-15 catalysts were prepared by two kinds of solid-state grinding method and used for the production of 1,3-butadiene(1,3-BD) from ethanol.A mixture of SBA-15(with or without organic template) and metal precursors were ground in solid-state.The obtained catalysts were characterized by TG,N2 adsorption-desorption,TEM,XRD,Py-FTIR and NH_3-TPD techniques.Superior dispersion of metal oxides and more exposed acid sites were achieved on the catalyst lOZn_1Ce_5-AS with the presence of organic template in SBA-15 during the solid-state grinding process.The catalytic performance was evaluated in a fixed-bed reactor and a 1,3-butadiene selectivity of as high as 45% is achieved.This is attributed to the coupling effect of Zn and Ce species in the mesopores of SBA-15,in which Zn promotes ethanol dehydrogenation and Ce enhances aldol-condensation,respectively.Additionally,solvent-free method inspires new catalyst synthesis strategy for the production of 1,3-butadiene from ethanol.  相似文献   

10.
In this study density functional theory (DFT) calculations at B3LYP/6-31G(d), B3LYP/6-31+G(d) and B3LYP/6-311+G(2df,2p) levels for geometry optimization and total energy calculation were applied for investigation of the important energy-minimum conformations and transition-state of 1,2-, 1,3-, and 1,4-dithiepanes. Moreover, ab initio calculations at HF/6-31G(d) level of theory for geometry optimization and MP2/6-311G(d)//HF/ 6-31G(d) level for a single-point total energy calculation were reported for different conformers. The obtained results reveal that, the twist-chair conformer is a global minimum for all of these compounds. Also, two local minimum were found in each case, which are twisted-chair and twisted-boat conformers. The boat and chair geometries are transition states. The minimum energy conformation of 1,2-dithiepane is more stable than the lowest energy forms of 1,3-dithiepane and 1,4-dithiepane. Furthermore, the anomeric effect was investigated for 1,3-dithiepane by the natural bond orbital method. The computational results of this study shows that all conformers of 1,3-dithiepane have a hypercojugation system. Finally, the 13C NMR chemical shifts for the conformers of 1,4-dithiepane were calculated, which have good correlation with their experimental values.  相似文献   

11.
The title complex, [CuCl2(C6H6N4S2)], has a flattened tetrahedral coordination. The CuII atom is located on a twofold rotation axis and is coordinated by two N atoms from a chelating 2,2′‐di­amino‐4,4′‐bi‐1,3‐thia­zole ligand and by two Cl atoms. Intramolecular hydrogen bonding exists between the amino groups of the 2,2′‐di­amino‐4,4′‐bi‐1,3‐thia­zole ligand and the Cl atoms. The intermolecular separation of 3.425 (1) Å between parallel bi­thia­zole rings suggests there is a π–π interaction between them.  相似文献   

12.
Maleic acid and fumaric acid, the Z and E isomers of butenedioic acid, form 1:1 adducts with 2‐amino‐1,3‐thiazole, namely 2‐amino‐1,3‐thiazolium hydrogen maleate (2ATHM), C3H5N2S+·C4H3O4, and 2‐amino‐1,3‐thiazolium hydrogen fumarate (2ATHF), C3H5N2S+·C4H3O4, respectively. In both compounds, protonation of the ring N atom of the 2‐amino‐1,3‐thiazole and deprotonation of one of the carboxyl groups are observed. The asymmetric unit of 2ATHF contains three independent ion pairs. The hydrogen maleate ion of 2ATHM shows a short intramolecular O—H...O hydrogen bond with an O...O distance of 2.4663 (19) Å. An extensive hydrogen‐bonded network is observed in both compounds, involving N—H...O and O—H...O hydrogen bonds. 2ATHM forms two‐dimensional sheets parallel to the ab plane, extending as independent parallel sheets along the c axis, whereas 2ATHF forms two‐dimensional zigzag layers parallel to the bc plane, extending as independent parallel layers along the a axis.  相似文献   

13.
As part of the structure‐activity relationship of the dopamine D2 and serotonin 5‐HT3 receptors antagonist 1, which is a clinical candidate with a broad antiemetic activity, the synthesis and dopamine D2 and serotonin 5‐HT3 receptors binding affinity of (R)‐5‐bromo‐N‐(1‐ethyl‐3‐methylhexahydro‐1,3‐diazin‐5‐yl)‐ and (R)‐5‐bromo‐N‐(1‐ethyl‐5‐methyloctahydro‐1,5‐diazocin‐3‐yl)‐2‐methoxy‐6‐methylaminopyridine‐3‐carboxam‐ides ( 2 and 3 ) are described. Treatment of 1‐ethyl‐2‐(p‐toluenesulfonyl)amino‐3‐methylaminopropane dihy‐drochloride ( 4a ) with paraformaldehyde and successive deprotection gave the 5‐aminohexahydro‐1,3‐diazine 6 in excellent yield. 3‐Amino‐1‐ethyl‐5‐methyloctahydro‐1,5‐diazocine ( 15 ) was prepared from 2‐(benzyloxycarbonyl)amino‐3‐[[N‐(tert‐butoxycarbonyl)‐N‐methyl]amino]‐1‐ethylaminopropane ( 9 ) through the intramolecular amidation of (R)‐3‐[N‐[(2‐benzyloxycarbonylamino‐3‐methylamino)propyl]‐N‐ethyl]aminopropionic acid trifluoroacetate ( 12 ), followed by lithium aluminum hydride reduction of the resulting 6‐oxo‐1‐ethyl‐5‐methyloctahydrodiazocine ( 13 ) in 41% yield. Reaction of the amines 6 and 15 with 5‐bromo‐2‐methoxy‐6‐methylaminopyridine‐3‐carboxylic acid furnished the desired 2 and 3 , which showed much less potent affinity for dopamine D2 receptors than 1 .  相似文献   

14.
An efficient two‐step method for the preparation of 3‐(2‐hydroxyethoxy)‐ or 3‐(3‐hydroxypropoxy)isobenzofuran‐1(3H)‐ones 3 has been developed. Thus, the reaction of 1‐(1,3‐dioxol‐2‐yl)‐ or 1‐(1,3‐dioxan‐2‐yl)‐2‐lithiobenzenes, generated in situ by the treatment of 1‐bromo‐2‐(1,3‐dioxol‐2‐yl)‐ or 1‐bromo‐2‐(1,3‐dioxan‐2‐yl)benzenes 1 with BuLi in THF at ?78°, with (Boc)2O afforded tert‐butyl 2‐(1,3‐dioxol‐2‐yl)‐ or 2‐(1,3‐dioxan‐2‐yl)benzoates 2 , which can subsequently undergo facile lactonization on treatment with CF3COOH (TFA) in CH2Cl2 at 0° to give the desired products in reasonable yields.  相似文献   

15.
Nitroarenes are reductively cyclized with 3‐amino‐1‐propanols in dioxane/H2O in the presence of a ruthenium catalyst and tin(II) chloride dihydrate together with isopropanol to afford the corresponding quinolines. A reaction pathway involving initial reduction of nitroarenes to anilines, propanol group transfer from 3‐amino‐1‐propanols to anilines, N‐alkylation of anilines by 3‐anilino‐1‐propanols and heteroannulation of 1,3‐dianilinopropanes is proposed.  相似文献   

16.
Nucleophilic trifluoromethylation of α‐imino ketones 2 , derived from arylglyoxal, with RuppertPrakash reagent (CF3SiMe3) offers a convenient access to the corresponding O‐silylated β‐imino‐α‐(trifluoromethyl) alcohols. In a ‘one‐pot’ procedure, by treatment with NaBH4, these products smoothly undergo reduction and desilylation yielding the expected β‐amino‐α‐(trifluoromethyl) alcohols 4 . The latter were used as starting materials for the synthesis of diverse trifluoromethylated heterocycles, including aziridines 5 , 1,3‐oxazolidines 8 , 1,3‐oxazolidin‐2‐ones 9 , 1,3,2‐oxazaphospholidine 2‐oxides 10 , 1,2,3‐oxathiazolidine 2‐oxides 11 , and morpholine‐2,3‐diones 12 . An optically active 5‐(trifluoromethyl)‐substituted 1,3‐oxazolidin‐2‐one 9g was also obtained.  相似文献   

17.
Aldol reaction of 7‐chloro‐1,3‐dihydro‐1‐methyl‐5‐phenyl‐2H‐1,4‐benzodiazepin‐2‐one ( 1 ) with 4‐substituted α‐methylcinnamaldehydes 2 – 5 afforded a mixture of threo‐ and erythro‐3‐(3‐aryl‐1‐hydroxy‐2‐methylprop‐2‐enyl)‐7‐chloro‐1,3‐dihydro‐1‐methyl‐5‐phenyl‐2H‐1,4‐benzodiazepin‐2‐ones 6 – 13 . The chromatographically separated threo diastereoisomers 6, 8, 10 , and 12 and erythro diastereoisomers 7, 9, 11 , and 13 were submitted to ‘directed' homogeneous hydrogenation catalyzed by [RhI(cod)(diphos‐4)]ClO4 (cod=cycloocta‐1,5‐diene, diphos‐4=butane‐1,4‐diylbis[diphenylphosphine]. From the erythro‐racemates 9, 11 , and 13 , the erythro,erythro/erythro,threo‐diastereoisomer mixtures 16 / 17, 20 / 21 , and 24 / 25 were obtained in ratios of 20 : 80 to 28 : 72 (HPLC), which were separated by chromatography. From the threo racemates 8, 10 , and 12 , the threo,threo/threo,erythro‐diastereoisomer mixtures were obtained in a ratio of ca. 25 : 75 (1H‐NMR). The relative configurations were assigned by means of 1H‐NMR data and X‐ray crystal‐structure determination of 21 . Hydrolysis of 21 afforded the diastereoisomerically pure N‐(benzyloxy)carbonyl derivative 27 of α‐amino‐β‐hydroxy‐γ‐methylpentanoic acid 26 , representative of the novel group of polysubstituted α‐amino‐β‐hydroxycarboxylic acids.  相似文献   

18.
A series of 2‐amino‐7‐methoxy‐4‐aryl‐4H‐chromene‐3‐carbonitrile compounds 2 were obtained by condensation of 3‐methoxyphenol with β‐dicyanostyrenes 1 in absolute ethanol containing piperidine. The intermediate enamines 3 were prepared by compounds 2 with 5‐substituted‐1,3‐cyclohexanedione using p‐toluenesuflonic acid (TsOH) as catalyst. The title compounds 11‐amino‐3‐methoxy‐8‐substituted‐12‐aryl‐8,9‐dihydro‐7H‐chromeno[2,3‐b]quinolin‐10(12H)‐one 4 were synthesized by cyclization of the intermediate enamines 3 in THF with K2CO3 /Cu2Cl2 as catalyst. The structures of all compounds were characterized by elemental analysis, IR, MS, and 1H NMR spectra. The crystal structure of compound 4i was determined by single‐crystal X‐ray diffraction analysis.  相似文献   

19.
In the title compounds, C12H20O6, (I), and C9H16O6, (II), the five‐membered furanose ring adopts a 4T3 conformation and the five‐membered 1,3‐dioxolane ring adopts an E3 conformation. The six‐membered 1,3‐dioxane ring in (I) adopts an almost ideal OC3 conformation. The hydrogen‐bonding patterns for these compounds differ substantially: (I) features just one intramolecular O—H...O hydrogen bond [O...O = 2.933 (3) Å], whereas (II) exhibits, apart from the corresponding intramolecular O—H...O hydrogen bond [O...O = 2.7638 (13) Å], two intermolecular bonds of this type [O...O = 2.7708 (13) and 2.7730 (12) Å]. This study illustrates both the similarity between the conformations of furanose, 1,3‐dioxolane and 1,3‐dioxane rings in analogous isopropylidene‐substituted carbohydrate structures and the only negligible influence of the presence of a 1,3‐dioxane ring on the conformations of furanose and 1,3‐dioxolane rings. In addition, in comparison with reported analogs, replacement of the –CH2OH group at the C1‐furanose position by another group can considerably affect the conformation of the 1,3‐dioxolane ring.  相似文献   

20.
A simple and efficient synthesis of 2‐amino‐4‐aryl thiazole derivatives was carried out through the reaction of substituted acetophenones and thiourea using three different types of catalytic systems including N,N,N′,N′‐tetrabromobenzene‐1,3‐disulfonamide [TBBDA], poly(N,N′‐dibromo‐N‐ethylbenzene‐1,3‐disulfonamide) [PBBS] and a combination of TBBDA and nano‐magnetic catalyst supported with functionalized 4‐amino‐pyridine silica (MNPs@SiO2‐Pr‐AP). The results showed that the use of TBBDA along with the MNPs@SiO2‐Pr‐AP gains the highest yields of the products in the shortest reaction time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号