首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
该文以特殊设计的DNA序列为捕获探针,以G-四链体-血红素复合物作为信号分子,利用链式反应实现目标DNA的灵敏检测。在目标DNA存在时,捕获探针与目标DNA相互识别,同时目标DNA能与辅助探针发生连续的链式反应,从而在电极表面引入大量G-四链体结构。血红素存在下,G-四链体可与血红素结合形成具有很强电化学信号的G-四链体-血红素复合物。用差分脉冲伏安法(DPV)扫描得到的电化学信号与体系中的目标DNA浓度存在对应关系,从而实现对目标DNA的检测。在各组分浓度最适的情况下,电流响应值与目标DNA浓度在0.01~10 pmol/L内具有良好的线性关系,检出限可达8 fmol/L。该传感器灵敏度高、特异性好,具有良好的应用前景。  相似文献   

2.
朱化雨  张利  陈怀成  闫圣娟 《分析化学》2012,40(10):1549-1554
利用巯基乙胺将合成的金纳米粒子氨基化;基于纳米粒子负载羧基化的联吡啶钌和巯基DNA制得电化学发光信号探针;采用酶循环信号放大技术,获得大量含新增DNA的溶液来捕获信号探针;以金电极为载体,将巯基DNA自组装到电极表面,依次杂交互补DNA和信号探针,构建电化学发光生物传感器.在优化的条件下,此传感器对凝血酶具有良好的响应,在3.0× 10-13~6.0×10-11 mol/L范围内,凝血酶的浓度与发光强度呈良好的线性关系,检出限为1.8× 10-13 mol/L(3a).采用酶切循环放大技术制备的生物传感器具有灵敏度高,选择性和重现性良好等特点.  相似文献   

3.
韩苗苗  王萍  席守民 《分析测试学报》2020,39(12):1466-1472
该文以DNA四面体纳米结构探针(TSP)为捕获探针,将辣根过氧化物酶标记的IgG抗体结合在纳米金颗粒表面(AuNPs-IgG-HRP)作为信号分子,构建了一种新型DNA甲基化电化学传感器。利用一步热变性法组装成TSP后,通过Au—S键固定在修饰纳米金颗粒的金电极表面,经过靶标DNA杂交、5-甲基胞嘧啶(5-mc)抗体及AuNPs-IgG-HRP结合后,用差分脉冲伏安法(DPV)进行检测。采用循环伏安法(CV)和电化学阻抗谱(EIS)对修饰电极的构建过程进行电化学表征。探究了杂交时间、5-mc抗体浓度、IgG-HRP加入体积、氢醌(HQ)和过氧化氢(H2O2)浓度对传感器的影响。在最佳条件下,该传感器对甲基化DNA的线性响应范围为1.0×10-15~1.0×10-10 mol/L,检出限(S/N=3)为4.4×10-16 mol/L。该传感器具有良好的选择性和稳定性,为DNA甲基化检测提供了新方法。  相似文献   

4.
以室温固相合成法制备纳米ZnO,通过壳聚糖(CHIT)的成膜效应将纳米ZnO固定在玻碳电极(GCE)表面,制得的ZnO/CHIT/GCE电极成为DNA固定和杂交的良好平台。DNA的固定和杂交通过电化学交流阻抗进行表征。以电化学交流阻抗免标记法检测目标DNA,固定于电极表面的DNA探针与目标DNA杂交后使电极表面的电子传递电阻增大,以此作为检测信号可以高灵敏度地测定目标DNA。电化学阻抗谱检测人类免疫缺陷病毒(HIV)基因片段的线性范围为2.0×10-11~2.0×10-6mol/L,检出限为2.0×10-12mol/L。  相似文献   

5.
报道了基于纳米金-Nafion修饰金电极检测人端粒DNA的电化学阻抗传感器。将纳米金与Nafion混合超声得到纳米金-Nafion纳米材料,将此纳米材料滴涂于金电极表面获得纳米金-Nafion修饰电极。再将探针人端粒ss DNA滴涂在修饰电极上制备电化学阻抗传感器。利用扫描显微镜对纳米材料的形貌进行了表征。利用循环伏安法和电化学阻抗法对传感器进行了表征及目标人端粒DNA的定量测定。在最优化实验条件下,电化学阻抗传感器响应信号(ΔRet)与目标人端粒DNA浓度的对数(lgc)在0.001~1.0 nmol/L范围内呈良好线性关系。检出限为3.0 pmol/L。对0.5 nmol/L的目标人端粒DNA 7次平行测定,相对标准偏差RSD为3.5%。  相似文献   

6.
《分析试验室》2021,40(5):583-587
利用全氟代磺酸脂(Nafion)的成膜效应将多壁碳纳米管(MWCNTs)固定在玻碳电极(GCE)上,制得MWCNTs/Nafion/GCE修饰电极。利用MWCNTs上的羧基和大肠杆菌DNA探针上修饰的氨基之间的酰化反应将探针固定在电极上,大肠杆菌目标DNA与固定于电极表面的DNA探针杂交后,电极表面的电子传递电阻变大,从而实现大肠杆菌目标DNA基因片段的测定。通过电化学循环伏安法(CV)和交流阻抗法(EIS)对所制备的传感器的灵敏度和选择性进行表征,在优化条件下,检测大肠杆菌基因片段的线性范围为10 pmol/L~1.0μmol/L,检出限为6.3 pmol/L,相关系数R~2=0.9965。  相似文献   

7.
基于"核酸外切酶(ExoⅢ)辅助靶序列循环"和"DNA长距自组装"两种信号放大技术研制了一种DNA电化学生物传感器,并将其用于乳腺癌相关靶序列的高灵敏、高特异性检测。通过将发卡型探针固定在金电极表面,当靶序列存在时,在ExoⅢ的辅助下,发生杂交、酶降解、再杂交的第一重信号放大过程。接着在电极表面加入两条辅助探针,即可发生级联式杂交,形成长距超级"三明治"DNA结构。该结构可吸附大量的电活性分子六氨合钌配合物(RuHex),产生很强的电化学信号,从而实现信号的第二重放大。实验结果表明,在最佳条件下,该传感器的线性范围为10 amol/L~10 pmol/L,检出限达到8 amol/L,而且能较好地识别完全互补和错配序列,有望用于临床实际样本中超低含量靶序列的检测。  相似文献   

8.
利用切刻内切酶的酶切作用实现信号放大,结合量子点高效的电化学发光性能,构建了一种新型电化学发光DNA生物传感器.将捕获探针DNA(c-DNA)通过自组装的方式固定到金电极表面,后与目标DNA(t-DNA)互补杂交形成双链DNA,利用切刻内切酶Nt.BstNBI特异性识别双链上的酶切位点(5'-GAGTC-3'),然后在c-DNA相应的切割位点(识别序列3'端后的4个碱基处)对其进行剪切,释放出目标链,参与下一轮的杂交及酶切,通过目标物的循环利用,实现信号放大.利用N-羟基琥珀酰亚胺(N HS)和1-乙基-3-3-二甲基氨丙基碳化二亚胺(EDC)活化羧基化CdTe量子点表面的羧基,与电极表面残留的c-DNA末端的氨基共价交联,通过测定捕获的量子点的电化学发光信号对目标DNA进行检测.优化后的检测条件为:c-DNA浓度1 μmol/L,杂交时间60 min,Nt.BstNBI浓度0.5 U/μL,酶切反应时间4h.在优化条件下,目标DNA浓度在2.0×10-13~2.0×10-11 mol/L范围内,其对数与电化学发光强度呈线性关系,检出限为7.3×10-14 mol/L.人体血样加标回收率为96.4%~108.0%.  相似文献   

9.
以聚苯乙烯微球为载体,利用滚环放大技术,发展了一种以串联G-四链体-血红素DNA酶催化及T-Hg~(2+)-T特异识别为基础的"Turn-on"型Hg~(2+)高灵敏生物传感器,用于尿液样本中Hg~(2+)的高效检测。通过链霉亲和素和生物素的特异性结合,将富T生物素化Hg~(2+)捕获探针固定至微球表面,当Hg~(2+)存在时,通过形成T-Hg~(2+)-T结构将含有G-四链体互补序列的环化单链DNA序列捕获至微球表面,滚环扩增后在微球表面产生大量包含串联G-四链体的DNA序列。当氯化血红素(Hemin)插入G-四链体后,形成具有增强催化活性的G-四链体-hemin DNA酶,可催化ABTS和H_2O_2反应形成ABTS~(·+),在420 nm处具有最大吸收。考察了多种因素对检测体系的影响,在最优实验条件下,此方法对Hg~(2+)的线性检测范围为0.4~100 pmol/L,检出限为0.3pmol/L(S/N=3),回归方程为△A_(420 nm)=0.1+0.0019C_(Hg~(2+))(pmol/L)。当共存离子大量存在时,传感器对Hg~(2+)仍然具有高的选择性。应用于尿液样品中Hg~(2+)检测,加标回收率为94.0%~106.0%,相对标准偏差(RSD)为1.4%~2.6%。此方法具有良好的选择性、灵敏度及抗干扰能力,可用于复杂样品中Hg~(2+)的检测。  相似文献   

10.
将核酸外切酶Ⅲ诱导的双重信号放大技术与MoS2纳米片的荧光猝灭性质结合,构建了一种高灵敏高选择性的DNA检测方法.首先设计两条末端修饰荧光基团的探针核酸(HP1和HP2).由于两条探针核酸具有3'粘性末端,使其不会被核酸外切酶Ⅲ降解,因而被吸附于MoS2纳米片而猝灭其荧光.当目标DNA存在时,会促使核酸外切酶Ⅲ启动双重信号放大反应,并将探针核酸降解成大量的不能吸附于MoS2纳米片表面的荧光碎片.在优化条件下,目标DNA浓度在0.5~6.0 pmol/L范围内与荧光信号变化呈良好的线性关系,检出限为0.28 pmol/L.与单重信号放大技术相比,本方法极大改善了分析灵敏度和检出限,且具有良好的单碱基错配区分能力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号