首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
The collision-induced absorption of the symmetric vibration of CO2 has been observed in the pure gas at densities from 20.0 to 40.0 amagat and at temperatures of 273, 298, and 323 K using infrared techniques. From the integrated intensities of the bands and using the (exp ?4) model of van Kranendonk, it is possible to deduce a value for the first derivative of the quadrupole moment with respect to the vibrational coordinate. For CO2 the contribution from quadrupole distortion to the binary absorption coefficient is reported for several temperatures. The (exp ?4) model of van Kranendonk is used to calculate the binary absorption coefficients for the fundamental vibrational bands of N2 and O2 at temperatures from 70 to 340 K. The parameters λ and p/σ describing the magnitude and range of the short-range collision-induced dipole moments were determined using the known experimental absorption coefficients. The contributions from atomic distortion and quadrupole distortion to the binary absorption coefficient are calculated for N2 and O2.  相似文献   

2.
The CL spectra of the title reactions and their pressure dependences have been studied over the 5 × 10?6 ? 5 × 10?3 torr range in a beam-gas experiment. In the Sm + N2O, O3 and Yb + O3 reactions simple bimolecular formation of the short lived (radiative lifetime τR < 3 × 10?6 s) MO* emitters dominates the entire pressure range. In the other systems Sm + (F2, Cl2), Yb + (F2, Cl2) the CL spectra are strongly pressure dependent, indicating extensive energy transfer from long-lived intermediates. Reaction mechanisms are suggested. The quantum yields Φ, obtained by calibrating relative quantum yields with Dickson and Zare's absolute value for Sm + N2O [Chem. Phys. 7 (1975) 367], range from Φ = 2.3% (for Sm + F2, the most efficient reaction) down to Φ = 0.005% for Yb + Cl2. The following lower limit estimates were obtained for the product dissociation energies from the short wavelength CL cutoffs: D00(SmF) ? 121.3 ± 2.4 kcal/mole, D00(SmCl) ? ? 100 ± 3 kcal/mole, D00(YbO) ? 94.2 ± 1.5 kcal/moie, D00(YbF) ? 123.7 ± 2.3 kcal/mole.  相似文献   

3.
The emission spectra of microcrystalline Cs2NaTbCl6 and Cs2Na(Y0.99Tb0.01)Cl6 have been measured at room temperature and at 77 K. The crystal structures of these compounds are face-centered cubic and the terbium (III) ions lie at sites of octahedral (Oh) symmetry surrounded by six chloride ions. Emission is observed from both the 5D3 and 5D4 excited states of Tb3+. Assignments have been made for nearly all of the magnetic-dipole transitions split out of the Tb3+7F6, 7F5, 7F4, 7F3, 7F2, 7F15D4 and 7F4, 7F25D3 transitions. These assignments are based on the calculated transition energies and relative magnetic-dipole strengths and intensities obtained from a weak-field crystal-field analysis of octahedral TbCl63? units. Magnetic-dipole lines dominate the spectra for transitions of ΔJ = ±1 free-ion parentage, whereas both magnetic-dipole lines and vibronically induced electric-dipole lines contribute significantly to the emission intensities of the ΔJ = 0, ±2 transitions. The crystal-field sub-levels of both 5D3 and 5D4 appear to reach a Boltzmann thermal equilibrium prior to emission. Emission from 5D3 is partially quenched in going from low temperature to high temperature and in going from Cs2NaYCl6: Tb3+ (1%) to Cs2NaTbCl6.This study has led to the identification and assignment of nearly all of the pure magnetic-dipole transitions split out of the Tb3+7F6, 7F5, 7F4, 7F3, 7F2, 7F15D4 and 7F4, 7F25D3 transitions in crystal-line Cs2NaTbCl6. The assignments were based on calculated transition energies and relative magnetic-dipole strengths (and intensities) obtained from a (weak-field) crystal-field analysis of octahedral (Oh) TbCl63? clusters. Excellent agreement between the calculated and observed relative intensities of the magnetic-dipole lines was achieved by assuming a Boltzmann equilibrated set of crystal-field sub-levels for both the 5D4 and 5D3 emitting states. Furthermore, the experimental results suggest that 5D45D3 relaxation is temperature-dependent.The energy levels calculated and displayed in table 1 appear to be qualitatively correct and are in semiquantitative agreement with the emission results (as interpreted in section 4). Calculated and observed transition energies for the assigned magnetic-dipole transitions generally agree to within 0.2%.One of the most remarkable features of the emission spectra obtained on Cs2NaTbCl6 is the absence of any vibrational structure in the ΔJ = ± 1 transitions (7F6, 7F35D4 and 7F4, 7F25D3), and the presence of extensive vibrational structure in the ΔJ = O, ±2 transitions (7F6, 7F4, 7F25D4). If other than OO vibronic transitions do contribute to the ΔJ = ±1 emissions, their intensities must be at least two or three orders-of-magnitude weaker than the OO magnetic-dipole lines. Vibronically induced electric-dipole transitions appear, however, to make substantial contributions to the 7F6, 7F4, 7F25D4 emission spectra. A clear-cut theoretical explanation for the absence of vibrational structure in the ΔJ = ±1 transitions is not readily apparent. We are presently examining this problem in greater detail.  相似文献   

4.
Studies are made of the visible chemiluminescence resulting from the reaction of an atomic beam of samarium or europium with O3, N2O, NO2 and F2 under single-collision conditions (~10?4 torr). The spectra obtained for SmO, EuO, SmF, and EuF are considerably more extensive than previously observed. The variation of the chemiluminescent intensity with metal flux and with oxidant flux is investigated, and it's concluded that the reactions are bimolecular. From the short wavelength curoff of the chemiluminescent spectra, the following lower bounds to the ground state dissociation energies are obtained: D00(SmO) > 135.5 +- 0.7 kcal/mole, D00(EuO) > 131.4 ± 0.7 kcal/mole, D00(SmF) > 123.6 ± 2.1 kcal/mole, and D00(EuF) > 129.6 ± 2.1 kcal/mole. Using the Clausius-Clapeyron equation, the latent heats of sublimation are found to be ΔH1052 (Eu) = 42.3 ± 0.7 kcal/mole for europium and ΔH1084(Sm) = 47.9 ± 0.7 kcal/mole for samarium. Total phenomena- logical cross sections are determined for metal atom removal. Relative photon yields per product molecule are calculated from the integrated chemiluminescent spectra and it is found that Sm + F2 → SmF* + F is the brightest reaction. The comparison of the photon yields under single-collision conditions with those at several torr shows that energy transfer collisons play an important role in the mechanism for chemiluminescence at the higher pressures. A simple model is presented which explains the larger photon yields of the Sm reactions compared to the Eu reactions in terms of the greater number of electronic states correlating with the reactants in the case of samarium.  相似文献   

5.
Rate coefficients for collisional removal of O(1D) by six atmospheric gases have been measured by monitoring the appearance of O(3P) following photolytic production of O(1D). The measured values, kM±2σ, in units of 10?11 cm?3 molecule ?1 s?1 are kO3 = 22.8±2.3, kN2 = 2.52 ± 0.25, kCO2 = 10.4 ± 1.0,kH2O 195± 2.0, kN2O = 11.7 ± 1.2, and kH2, = 11.8±1.2.  相似文献   

6.
An improved theory of electron transfer absorption is proposed. The possibility of such absorption during the collision of ion-molecule pairs is discussed and frequencies for the O2O2+, O2O2?, NONO?, COCO+ and N2N2+ pairs are estimated. Oscillator strengths are also estimated for the O2O2+ pair.  相似文献   

7.
The crystal structures of the defect pyrochlores TaWO5.5, HTaWO6, DTaWO6, H2Ta2O6, D0.4H1.6Ta2O6, and HTaWO6 · H2O, have been investigated by neutron powder diffraction. By using conventional refinements, Fourier techniques, and electrostatic potential calculations the individual proton was found to be located in a partially occupied 48f position. At room temperature the oxygen of the water molecule resides in a 32e site close to the 8b position; the diffraction analysis at 4 K does not permit an unequivocal location of the water molecules but indicates a symmetry lowering induced presumably by the ordering of the water molecules.  相似文献   

8.
Changes in molecular properties and in the electronic charge distribution of the molecules SiH4, SiH3F and SiH2F2 are studied within the framework of the ab initio Hartree—Fock SCF—LCAO—MO method. The ionisation potentials, calculated with the use of Koopmans' theorem, correlate well with the experimental vertical ionisation potentials. The combined s and p electronic populations of the Si atom are not substantially altered when adding Si 3d functions to the basis set.  相似文献   

9.
The rare-earth dicarboxylate hybrid materials [Ce(H2O)]2[O2C(CH2)2CO2]3 ([Ce(Suc)]) and [Sm(H2O)]2[O2C(CH2)2CO2]3·H2O ([Sm(Suc)]) have been hydrothermally synthesized (200°C, 3 days) under autogenus pressure. [Ce(Suc)] is triclinic, a=7.961 (3) Å, b=8.176 (5) Å, c=14.32 (2) Å, α=97.07° (7), β=96.75° (8), γ=103.73° (6), and z=2. The crystal structure of this compound has been determined using 3120 unique single crystal data. The final refinements let the agreement factors R1 and wR2(F2) converge to 0.0138 and 0.0363, respectively. [Ce(Suc)] is built up from infinite chains of edge-sharing nine-fold coordinated cerium atoms running along [100]. These chains are interconnected by the carbon atoms of the succinate anions, leading to a three-dimensional hybrid framework. The cell constants of [Sm(Suc)], isotypic with monoclinic C2/c [Pr(H2O)]2[O2C(CH2)2CO2]3·H2O ([Pr(Suc)]), were refined starting from X-ray powder data: a=20.275 (3) Å, b=7.919 (6) Å, c=14.130 (3) Å, and β=121.45° (1). Despite its lower symmetry, [Ce(Suc)] presents an important structural filiation with [Sm(Suc)]  相似文献   

10.
采用自组装和化学沉淀法分别制得两种可见光驱动复合材料石墨相氮化碳/碳酸氧铋(g-C_3N_4/Bi_2O_2CO_3).采用X射线衍射光谱(XRD),紫外可见光谱、扫描电镜(SEM)、N_2吸附、电化学阻抗谱(EIS)和X射线光电子能谱(XPS)等分析手段对制备的催化剂进行了表征.结果表明,制备方法对纳米复合材料的晶相、形态及光学性能没有影响,但是影响g-C_3N_4和Bi_2O_2CO_3之间的相互作用力,导致光生电子-空穴对的分离速率存在显著差异.以可见光驱动苯酚和罗丹明B的降解实验为探针反应检测催化剂的光催化性能.实验结果表明自组装法得到的异质结催化剂中相互作用力更强,催化效果最高.O_2-是罗丹明B降解反应的主要活性物种,染料的光敏化、Bi_2O_2CO_3与g-C_3N_4综合效应,导致光生载流子电荷分离效率更高.  相似文献   

11.
The electric field gradients (EFG) at the sites of the cations and the “central” atoms of the anions in the ionic crystals NaNO2, NaBF4, NaNO3 and Ba(NO3)2 are calculated by a method based on a combination of the semi-empirical INDO method for the charge distribution and the intramolecular EFG with a lattice summation in the framework of the extended multipole model. At some lattice sites the contribution of the induced dipole and quadrupole moments to the EFG is comparable with the contribution of the point charges. The charge distribution within the molecular ions is found by adjusting either the calculated asymmetry parameter η or the z-component of the EFG to the experimental value deduced from nuclear quadrupole coupling constants. These charge distributions are in good agreement with those gained from INDO calculations. The calculated and experimental quadrupole coupling constants of nuclei in anions and cations are compared.  相似文献   

12.
The thermal decomposition of the vapor phases of the oxygen bridged dimers Se2O2F8 and Te2O2F8 has been studied by mass spectrometry, electric deflection and flight time analysis on a molecular beam generated directly from the decomposition products. Se2O2F8 begins to decompose at ?250°C; the principal products are SeF4 and O2, with SeOF2 as a minor product. Decomposition is complete by ?500°C. There is some decomposition to monomeric SeOF4 between 200 and 350°C. Te2O2F8 did not begin to decompose until a temperature of 400°C was reached. Again, the principal products observed were TeF4, O2, and TeOF2 with no evidence for decomposition to the monomeric TeOF4.  相似文献   

13.
Polymerization of norbornene bearing Si(CH3)3 groups in the five position with the opening of double bonds was performed. By accurate selection of the ratios catalyst/co-catalyst and monomer/catalyst the samples with increased molecular mass (about 400,000) were obtained. Transport parameters of this, addition type poly(trimethylsilyl norbornene) (PTMSN) were measured using the gas chromatographic and mass spectrometric methods for different gases (H2, He, O2, N2, CO2, CH4, C2H6, C3H8 and n-C4H10). Temperature dependence of the permeability coefficients (P) indicated that low activation energies of permeation (EP) and diffusion (ED) are characteristic for PTMSN. In some cases (CO2, C2H6) negative EP values were observed. Thermodynamics of vapor sorption in this polymer was studied using the inverse gas chromatography method. It was shown that PTMSN is characterized by very large solubility coefficients S similar to those of poly(trimethylsilyl propyne) (PTMSP). The comparison of the P, D, and S values of these highly permeable polymers showed that the greater permeability of PTMSP is determined by the larger D values. Application of different approaches for the determination of the size of microcavities in PTMSN indicated that this polymer is characterized by large size of microcavity (800–1200 ?3).  相似文献   

14.
We performed density functional theory calculations of O2, CO2, and H2O chemisorption on the UN(001) surface using the generalized gradient approximation and PW91 exchange-correlation functional at non-spin polarized level with the periodic slab model. Chemisorp-tion energies vs. molecular distance from UN(001) surface were optimized for four sym-metrical chemisorption sites. The results showed that the bridge parallel, hollow parallel and bridge hydrogen-up adsorption sites were the most stable site for O2, CO2, and H2O molecular with chemisorption energies of 14.48, 4.492, and 5.85 kJ/mol, respectively. From the point of adsorbent (the UN(001) surface), interaction of O2 with the UN(001) surface was of the maximum magnitude, then CO2 and H2O, indicating that these interactions were associated with structures of the adsorbate. O2 chemisorption caused N atoms on the surface to migrate into the bulk, however CO2 and H2O had a moderate and negligible effect on the surface, respectively. Calculated electronic density of states demonstrated the electronic charge transfer between s, p orbital in chemisorption molecular and U6d, U5f orbital.  相似文献   

15.
A photoacoustic method is used under such experimental conditions that the (0110) level of CO2 gas is not in equilibrium with the other vibrational levels. The rate constants κ′10 characterizing the CO2 (0110) collisional deactivation by N2, CO and O2 are measured directly.  相似文献   

16.
The zinc fluoro phosphate Zn2F(PO4) has been produced by hydrothermal synthesis employing hydrofluoric acid as a mineralizer in a H2O or D2O medium. A single-crystal X-ray synchrotron diffraction analysis of Zn2F(PO4) shows that the zinc fluoro phosphate is monoclinic, a=9.690(1), b=12.793(1), and c=11.972(1) Å, β=108.265(1)°, space group P21/c, No. 14, Z=16. Reflections hkl with k=2n+1 are weak but significant and the structure shows pseudosymmetry. Zn2F(PO4) has the wagnerite-type M2F(XO4) structure with four Zn atoms each coordinated to four O atoms and one F atom while four other Zn atoms are coordinated to four O atoms and two F atoms. A difference Fourier map, calculated from the single-crystal X-ray data, shows additional electron density close to the four fluorine atoms, indicating a possible partial substitution of F by OH ions. This is unambiguously confirmed by 31P-{1H} cross-polarization magic-angle spinning (MAS) and by 1H/2H MAS NMR spectroscopy. The narrow line width observed for the 1H resonance and the unique set of 2H quadrupole coupling parameters (obtained for the Zn2F(PO4) sample using D2O as medium) show that 1H/2H is present as OH(D) groups rather than as water of crystallization in the structure. Quantitative 1H MAS NMR analysis shows that the composition of the sample is Zn2(OH)0.14(3)F0.86(3)(PO4). The high-speed 19F MAS NMR spectrum exhibits two resolved resonances with equal intensity, which are ascribed to an overlap of resonances from the four distinct fluorine sites in Zn2(OH)0.14(3)F0.86(3)(PO4).  相似文献   

17.
We present the controlled solution-phase synthesis of several sheet- or rod-like bismuth oxides, BiOCl, Bi12O17Cl2, α-Bi2O3 and (BiO)2CO3, by adjusting growth parameters such as reaction temperature, mole ratios of reactants, and the base used. BiOCl, Bi12O17Cl2, and α-Bi2O3 could be prepared from BiCl3 and NaOH, whereas (BiO)2CO3 was prepared from BiCl3 and urea. BiOCl and Bi12O17Cl2 could also be prepared from BiCl3 and ammonia. The α-Bi2O3 sample exhibited strong emission at room temperature.  相似文献   

18.
Ab initio calculations employing an extended 4-31G basis set have been applied to the highly fluorinated molecules, CF3O2H, CF3O2F and CF2(OF)2. Partial geometry optimizations have also been carried out on these molecules allowing a comparison between theory and the recently completed gas-phase electron diffraction results. The O-O bond distance in CF3O2 H is found to be longer (by 0.02 Å) than the corresponding bond in CF3O2F while the CO bond is found to be shorter (by 0.02 Å) in CF3O2H. The OF bond in CF3O2F is found to be longer (by 0.03–0.04 Å) than the corresponding bond in CF3OF or F2O. Torsional barriers have been computed for CF3O2H and CF3O2F with the aid of Fourier analysis of the potential curves. CF3O2H is found to have a torsional potential about the peroxide bond rather similar to that found for H2O2 while in CF3O2F the cis and trans barriers are predicted to be much larger (14.6 and 8.4 kcal mol?1, respectively). The threefold barrier to rotation of the CF3 group in CF3O2F is predicted to be 4.4 kcal mol?1. Various conformations of CF2(OF)2 have also been studied with conformations consistent with the operation of the gauche-effect being most stable. Bond separation energies and molecular properties have also been computed for these molecules.  相似文献   

19.
The salt, [N(CH3)4][IO2F2], was prepared from [N(CH3)4][IO3] and 49% aqueous HF, and characterized by Raman, infrared, and 19F NMR spectroscopy. Crystals of [N(CH3)4]2[IO2F2][HF2] were obtained by reduction of [N(CH3)4][cis-IO2F4] in the presence of [N(CH3)4][F] in CH3CN solvent and were characterized by Raman spectroscopy and single-crystal X-ray diffraction: C2/m, a = 14.6765(2) Å, b = 8.60490(10) Å, c = 13.9572(2) Å, β = 120.2040(10)°, V = 1523.35(3) Å3, Z = 4 and R = 0.0192 at 210 K. The crystal structure consists of two IO2F2 anions that are symmetrically bridged by two HF2 anions, forming a [F2O2I(FHF)2IO2F2]4− dimer. The symmetric bridging coordination for the HF2 anion in this structure represents a new bonding modality for the bifluoride anion.  相似文献   

20.
New anisotropic ESR spectra of Co2+ doped sapphire, different from hitherto known, are reported. The new spectra which are observed, beside the well-known spectra of α-Al2O3:Co2+, are shown to form two sets, each one consisting of six spectra (1–6) and (7–12). The spectra of both sets are proven to be interrelated by B3a symmetry. g and A tensors for each set will be given. Evidence is given that the two sets are to be assigned to the defects α-Al2O3:Co2+,H+ and α-Al2O3:Co2+,X+. The former is concluded to consists of a Co2+ ion at the substitutional site (c) and a proton located in a potential minimum along a straight line between O2- ions situated in O2+ triangles above and below the CO2+ ion. The potential function for the proton has been calculated by quantum-chemical calculations to clucidate the geometrical structure of the paramagnetic center. The α-Al2O3:Co2+,X+ could not be fully analyzed but some evidence is presented, that X+ might be alkali ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号