首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 595 毫秒
1.
Saddle point geometries and barrier heights have been calculated for the H abstraction reaction HO2(2A″)+H(2S) → H2(1Σ+g)+O2(3Σg) and the concerted H approach-O removing reaction HO2 (2A″)+H(2S) → H2O(1A1)+O(3P) by using SDCI wavefunctions with a valence double-zeta plus polarization basis set. The saddle points are found to be of Cs symmetry and the barrier heights are respectively 5.3 and 19.8 kcal by including size consistent correction. Moreoever kinetic parameters have been evaluated within the framework of the TST theory. So activation energies and the rate constants are estimated to be respectively 2.3 kcal and 0.4×109 ℓ mol−1 s−1 for the first reaction, 20.0 kcal and 5.4.10−5 ℓ mol−1 s−1 for the second. Comparison of these results with experimental determinations shows that hydrogen abstraction on HO2 is an efficient mechanism for the formation of H2 + O2, while the concerted mechanism envisaged for the formation of H2O + O is highly unlikely.  相似文献   

2.
The second-order rate constants of gas-phase Lu(2D3/2) with O2, N2O and CO2 from 348 to 573 K are reported. In all cases, the reactions are relatively fast with small barriers. The disappearance rates are independent of total pressure indicating bimolecular abstraction processes. The bimolecular rate constants (in molecule−1 cm3 s−1) are described in Arrhenius form by k(O2)=(2.3±0.4)×10−10exp(−3.1±0.7 kJmol−1/RT), k(N2O)=(2.2±0.4)×10−10exp(−7.1±0.8 kJmol−1/RT), k(CO2)=(2.0±0.6)×10−10exp(−7.6±1.3 kJmol−1/RT), where the uncertainties are ±2σ.  相似文献   

3.
Excitation of solutions of Fe(bipy)2(CN)2 by a 266-nm laser pulse produces a hydrated electron and the oxidized complex, Fe(bipy)2 (CN)2+, in the primary photochemical step, in homogeneous aqueous solution as well as in aqueous solutions containing cetyltrimethylammonium bromide (CTAB) or sodium dodecyl sulfate (SDS) micelles. In all cases nascent hydrated electrons react with ground state Fe(bipy)2(CN)2 to form Fe(bipy)2(CN)2, and comparison of the decay constants in the three media (H2O: k = 2.8 × 1010 M−1 s−1; CTAB: k = 2.9 × 1010 M−1 s−1; SDS: k = 5.5 × 109 M−1 s−1), shows that the reaction is essentially unaffected by CTAB micelles but is much slower in SDS solution. Similar micellar effects were found for the back reaction between eaq and Fe(bpy)2(CN)2+. Rate constants for the scavenging of the photogenerated hydrated electrons by methyl viologen (MV2+) cations and NO3 anions were measured in the three systems, and the results indicate that for scavenging by MV2+ the rate constants are decreased in the micelle systems (k in H2O, 8.4 × 1010; CTAB, 3.5 × 1010 and SDS, 1.58 × 1010 M−1 s−1), whereas for NO3 the CTAB micelle decreases while the SDS micelle enhances the scavenging compared to water solution (k in H2O, 8.3 × 109; CTAB, 7 × 108; and SDS, 2.05 × 1010 M−1 s−1). For the comproportionation reaction between Fe(bipy)2(CN)2+ and Fe(bipy)2(CN)2 both micelles reduce the rate (k in H2O, 3.3 × 1010; CTAB, 2.3 × 1010; and SDS, 1.05 × 1010 M−1s−1), but while the reaction of Fe(bipy)2(CN)2+ with MV+ is increased in CTAB compared to water, it is slowed in SDS (k in H2O, 2.4 × 1010; CTAB, 8.9 × 1010; and SDS, 1.8 × 1010 M−1s−1). All effects observed in these microheterogeneous systems can be uniformly interpreted in terms of Coulombic interactions between the actual reactants and the charged surface of the micelles.  相似文献   

4.
The photocatalytic removal of the insecticide fenitrothion (IUPAC name: O,O-dimethyl O-4-nitro-m-tolyl phosphorothioate), C9H12NO5PS, from water suspension of TiO2, was investigated by following the disappearance of the original substance along with the formation and disappearance of intermediates via recording NMR (1H and 31P) and UV spectra, as well as by pH measurements. Based on the obtained data, a possible reaction mechanism was proposed. It was found that 31P-NMR spectrometry can be successfully used to follow the kinetics of transforming organic into inorganic phosphorus in the course of the degradation (ka=9.2×10−7 mol dm−3 min−1, r=0.980 for the illumination period after 15 h). The rate of fenitrothion aromatic ring decomposition was followed by UV spectrometry during the illumination (ka=3.1×10−6 mol dm−3 min−1, r=0.989). The complete mineralization was attained after about 66 h of irradiation.  相似文献   

5.
The reaction: F + HCl→ HF (v 3) + Cl (1), has been initiated by photolysing F2 using the fourth-harmonic output at 266 nm from a repetitively pulsed Nd: YAG laser By analysing the time-dependence of the HF(3,0) vibrational chemiluminescence, rate constants have been determined at (296 ± 5) K for reaction (1), k1 = (7.0 ± 0.5) × 10−12 cm3 molecule−1 s−1, and for the relaxation of HF(v = 3) by HCl, CO2, N2O, CO, N2 and O2: kHCl = (1.18 ±0.14) × 10−11 kCO2 = (1.04 ± 0. 13) × 10−12, kN2O = (1.41 ± 0.13) × 10−11 kCO = (2.9 ± 0.3) × (10−12, kN2 = (7.1 ± 0.6) × 10−14 and kO2 = (1.9 ± 0.6) × 10−14 cm3molecule−1s−1.  相似文献   

6.
NH2 profiles were measured in a discharge flow reactor at ambient temperature by monitoring reactants and products with an electron impact mass spectrometer. At the low pressures used (0.7 and 1.0 mbar) the gas-phase self-reaction is dominated by a ‘bimolecular’ H2-eliminating exit channel with a rate coefficient of k3b(300 K) = (1.3 ± 0.5) × 10−12 cm3 molecule−1 s−1 and leading to N2H2 + H2 or NNH2 + H2. Although the wall loss for NH2 radicals is relatively small (kw ≈ 6–14 s−1), the contribution to the overall NH2 decay is important due to the relatively slow gas-phase reaction. The heterogeneous reaction yields N2H4 molecules.  相似文献   

7.
The state-selected reaction of CH(X2Πν″ = 0, 1) with H2 has been studied, in which CH was generated by IRMPD of a precursor gas, CH3OH. The subsequent evolution of CH (ν″ = 0, 1) was monitored by the sensitive LIF technique. For the ground state and vibrationally excited state CH, the reaction with H2 is found to depend on the total pressure in the sample cell at room temperature, which suggests that the reaction proceeds through an intermediate adduct, CH3. The backward dissociation process is found to depend on the buffer pressure, which can be rationalized via a collision-induced backward dissociation. The decay rates of CH (ν″ = 0, 1) due to collisions with H2 and Ar at a buffer pressure of 10 Torr are kH2 (ν″ = 1) = (2.3±0.1) × 10−1 cm3 molecule−1 s−1 and kAr (ν″ = 1) = (4.4±0.1) × 10−13 cm3 molecule−1 s−1. Possible effects of the vibrational excitation on the reaction rate of CH (ν″ = 1) are discussed.  相似文献   

8.
This work presents chemical modeling of solubilities of metal sulfates in aqueous solutions of sulfuric acid at high temperatures. Calculations were compared with experimental solubility measurements of hematite (Fe2O3) in aqueous ternary and quaternary systems of H2SO4, MgSO4 and Al2(SO4)3 at high temperatures. A hybrid model of ion-association and electrolyte non-random two liquid (ENRTL) theory was employed to fit solubility data in three ternary systems H2SO4–MgSO4–H2O, H2SO4–Al2(SO4)3–H2O at 235–270 °C and H2SO4–Fe2(SO4)3–H2O at 150–270 °C. Employing the Aspen Plus™ property program, the electrolyte NRTL local composition model was used for calculating activity coefficients of the ions Al3+, Mg2+ Fe3+ and SO42−, HSO4, OH, H3O+, respectively, as well as molecular species. The solid phases were hydronium alunite (H3O)Al3(SO4)2(OH)6, hematite Fe2O3 and magnesium sulfate monohydrate (MgSO4)·H2O which were employed as constraint precipitation solids in calculating the metal sulfate solubilities. A correlation for the equilibrium constants of the association reactions of complex species versus temperature was implemented. Based on the maximum-likelihood principle, the binary interaction energy parameters for the ionic species as well as the coefficients for equilibrium constants of the reactions were obtained simultaneously using the solubility data of the ternary systems. Following that, the solubilities of metal sulfates in the quaternary systems H2SO4–Fe2(SO4)3–MgSO4–H2O, H2SO4–Fe2(SO4)3–Al2(SO4)3–H2O at 250 °C and H2SO4–Al2(SO4)3–MgSO4–H2O at 230–270 °C were predicted. The calculated results were in excellent agreement with the experimental data.  相似文献   

9.
The rate coefficients of the reactions: (1) CN + H2CO → products and (2) NCO + H2CO → products in the temperature range 294–769 K have been determined by means of the laser photolysis-laser induced fluorescence technique. Our measurements show that reaction (1) is rapid: k1(294 K) = (1.64 ± 0.25) x 10−11 cm3 molecule−1 s−1; the Arrhenius relation was determined as k1 = (6.7 ± 1.0) x 10−11 exp[(−412 ± 20)/T] cm3 molecule−1 s−1. Reaction (2) is approximately a tenth as rapid as reaction (1) and the temperature dependence of k2 does not conform to the Arrhenius form: k2 = 4.62 x 10−17T1.71 exp(198/T) cm3 molecule−1 s−1. Our values are in reasonable agreement with the only reported measurement of k1; the rate coefficients for reaction (2) have not been previously reported.  相似文献   

10.
Single-crystal Zeeman effect studies have been done using 79Br NQR in Sr(BrO3)2 · H2O and Ba(BrO3)2 · H2O and the electric field gradient (EFG) parameters at the Br site have been determined. The point-charge model for the evaluation of EFG at the Br site, when applied to these systems, has not yielded satisfactory results. In another model, the total EFG is obtained as the sum of the covalent contribution and the inter-ionic contribution. To obtain the covalent contribution CNDO/2 MO calculations have been done for the (BrO3) ions of these systems. There is excellent agreement with the experimental values in the case of Sr(BrO3)2 · H2O, while the results on Ba(BrO3)2 · H2O indicate that the structural data on this crystal need refinement.  相似文献   

11.
Rate constants for the reactions of OH with CH3CN, CH3CH2CN and CH2=CH-CN have been measured to be 5.86 × 10−13 exp(−1500 ± 250 cal mole−1/RT), 2.69 × 10−13 exp(−1590 ± 350 cal mole−1/RT and 4.04 × 10−12 cm3 molecule−1 s−1, respectively in the temperature range 298–424 K. These results are discussed in terms of the atmospheric lifetimes of nitrfles.  相似文献   

12.
Gaussian-2 ab initio calculations were performed to examine the six modes of unimolecular dissociation of cis-CH3CHSH+ (1+), trans-CH3CHSH+ (2+), and CH3SCH2+ (3+): 1+→CH3++trans-HCSH (1); 1+→CH3+trans-HCSH+ (2); 1+→CH4+HCS+ (3); 1+→H2+c-CH2CHS+ (4); 2+→H2+CH3CS+ (5); and 3+→H2+c-CH2CHS+ (6). Reactions (1) and (2) have endothermicities of 584 and 496 kJ mol−1, respectively. Loss of CH4 from 1+ (reaction (3)) proceeds through proton transfer from the S atom to the methyl group, followed by cleavage of the C–C bond. The reaction pathway has an energy barrier of 292 kJ mol−1 and a transition state with a wide spectrum of nonclassical structures. Reaction (4) has a critical energy of 296 kJ mol−1 and it also proceeds through the same proton transfer step as reaction (3), followed by elimination of H2. Formation of CH3CS+ from 2+ (reaction (5)) by loss of H2 proceeds through protonation of the methine (CH) group, followed by dissociation of the H2 moiety. Its energy barrier is 276 kJ mol−1. On both the MP2/6-31G* and QCISD/6-31G* potential-energy surfaces, the H2 1,1-elimination from 3+ (reaction (6)) proceeds via a nonclassical intermediate resembling c-CH3SCH2+ and has a critical energy of 269 kJ mol−1.  相似文献   

13.
This Letter reports the first kinetic study of 2-butoxy radicals to employ direct monitoring of the radical. The reactions of 2-butoxy with O2 and NO are investigated using laser-induced fluorescence (LIF). The Arrhenius expressions for the reactions of 2-butoxy with NO (k1) and O2 (k2) in the temperature range 223–311 K have been determined to be k1=(7.50±1.69)×10−12×exp((2.98±0.47) kJmol−1/RT) cm3 molecule−1 s−1 and k2=(1.33±0.43)×10−15×exp((5.48±0.69) kJmol−1/RT) cm3 molecule−1 s−1. No pressure dependence was found for the rate constants of the reaction of 2-butoxy with NO at 223 K between 50 and 175 Torr.  相似文献   

14.
EPR lineshape simulation studies have been performed on a specimen of 80MoO3–20B2O3 glass in the temperature range of 300–77 K. The values of the obtained spin Hamiltonian parameters are: g=1.940, g=1.974, A=150.0×10−4 cm−1, A=35.6×10−4 cm−1 and g=1.935, g=1.975, A=141.9×10−4 cm−1, A=34.5×10−4 cm−1 at 300 and 77 K, respectively. The paramagnetic site in the specimen is molybdenyl, MoO3+, ion in which the Mo is in a distorted octahedral environment of six oxygen atoms with C4v symmetry. The 11-parallel and 11-perpendicular line feature of the EPR lineshape shows that two Mo nuclei are magnetically equivalent in the glassy matrix, in the temperature range 300–77 K.  相似文献   

15.
The photocatalytic decomposition of the herbicide (4-chloro-2-methylphenoxy)acetic acid (MCPA), C9H9ClO3, in aqueous suspensions containing TiO2 was investigated by following the formation of intermediates via recording proton NMR spectra. One of theoretically possible intermediates, 4-chloro-2-methylphenolmethanoate, was synthesized by a modified esterification procedure. Based on the data obtained a possible reaction mechanism was proposed. The rate of MCPA aromatic ring decomposition was followed by pH changes during illumination. As a result, apparent reaction rate constant was found to be 7.0×10−6 mol dm−3 min−1. The complete mineralization was attained after about 15 h of illumination.  相似文献   

16.
Peter C. Junk  Jonathan W. Steed   《Polyhedron》1999,18(27):4646-3597
[Co(η2-CO3)(NH3)4](NO3)·0.5H2O and [(NH3)3Co(μ-OH)2(μ-CO3)Co(NH3)3][NO3]2·H2O were prepared by prolonged aerial oxidation of a solution of Co(NO3)2·6H2O and ammonium carbonate in aqueous ammonia. The formation of these side products highlights the richness of the chemistry of these systems and the possibility of by products if methods are not strictly adhered to. The X-ray crystal structures of [Co(η2-CO3)(NH3)4][NO3]·0.5H2O and [(NH3)3Co(μ-OH)2(μ-CO3)Co(NH3)3][NO3]2·H2O reveal a monomeric octahedral cobalt center with η2-bound CO32− in the former, while the latter consists of a dimeric array where the two cobalt centers are bridged by two OH and one μ2-CO32− groups with three terminal NH3 ligands for each Co center. In both complexes extensive hydrogen bonding interactions are evident.  相似文献   

17.
The hydrogen permeation and stability of tubular palladium alloy (Pd–23%Ag) composite membranes have been investigated at elevated temperatures and pressures. In our analysis we differentiate between dilution of hydrogen by other gas components, hydrogen depletion along the membrane length, concentration polarization adjacent to the membrane surface, and effects due to surface adsorption, on the hydrogen flux. A maximum H2 flux of 1223 mL cm−2 min−1 or 8.4 mol m−2 s−1 was obtained at 400 °C and 26 bar hydrogen feed pressure, corresponding to a permeance of 6.4 × 10−3 mol m−2 s−1 Pa−0.5. A good linear relationship was found between hydrogen flux and pressure as predicted for rate controlling bulk diffusion. In a mixture of 50% H2 + 50% N2 a maximum H2 flux of 230 mL cm−2 min−1 and separation factor of 1400 were achieved at 26 bar. The large reduction in hydrogen flux is mainly caused by the build-up of a hydrogen-depleted concentration polarization layer adjacent to the membrane due to insufficient mass transport in the gas phase. Substituting N2 with CO2 results in further reduction of flux, but not as large as for CO where adsorption prevail as the dominating flow controlling factor. In WGS conditions (57.5% H2, 18.7% CO2, 3.8% CO, 1.2% CH4 and 18.7% steam), a H2 permeance of 1.1 × 10−3 mol m−2 s−1 Pa−0.5 was found at 400 °C and 26 bar feed pressure. Operating the membrane for 500 h under various conditions (WGS and H2 + N2 mixtures) at 26 bars indicated no membrane failure, but a small decrease in flux. A peculiar flux inhibiting effect of long term exposure to high concentration of N2 was observed. The membrane surface was deformed and expanded after operation, mainly following the topography of the macroporous support.  相似文献   

18.
Reartes GB  Liberman SJ  Blesa MA 《Talanta》1987,34(12):1039-1042
The acidity constants of benzidine (Bz) in aqueous solutions determined potentiometrically at 25° were Ka1 = (1.11 ± 0.08) × 10−5, Ka2 = (1.45 ± 0.12) × 10−4. The apparent mixed constants in 0.1M sodium nitrate are Ka1 = (5.37 ± 0.28) × 10−6 and Ka2 = (1.14 ± 0.09) × 10−4. The ultraviolet spectra were recorded as a function of pH and analysed with these constants to obtain the absorption spectra of H2Bz2+, HBz+ and Bz; the corresponding wavelengths of maximal absorption are 247, 273 and 278 nm, and molar absorptivities 1.63 × 104, 1.76 × 104 and 2.26 × 104 1.mole−1.cm−1.  相似文献   

19.
The reactive Kr+F2 potential energy surface is probed by two-photon, laser-induced chemical bond formation during a Kr+F2 collision. This is compared with the pulsed laser excitation (two-photon) of Kr(2p9) followed by collision with F2 leading to the formation of KrF(B, C). In addition to reporting the excitation spectrum for the two-phonon-induced collision process, these techniques were used to determine quenching rate constants of Kr2F*. Quenching by Xe gives XeF(B, C) with rate constant (1.5±0.2)×10−10 cm3 s−1; the quenching rate constant for F2 is (1.5±0.2)×10−10 cm3 s−1, and the radiative lifetime of Kr2F* is 240±35 ns. The quenching rate constant for the coupled Kr(2p8) and Kr(2p9) levels by F2 is (13±2)×10−10 cm3 s−1.  相似文献   

20.
The title cobalt(III) complexes have been investigated by polarized absorption and Raman spectroscopies of the single crystals. The symmetry properties of the d-electron orbitals and of the vibrational modes attributable to the Raman bands of trans(Cl2)-[CoCl2(NH3)n(H2O)4−n]Cl complexes (n = 2, 3, or 4) were examined to elucidated the peculiar observation that ligand substitution causes no splitting of the 15 200-cm−1 absorption band and the 250-cm−1 Raman band. Effects of replacing the NH3 ligand with H2O on the electronic structure, atom–atom force constants and vibrational modes of these complex ions are briefly described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号