首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The effects of electronic polarization in biomolecular interactions will differ depending on the local dielectric constant of the environment, such as in solvent, DNA, proteins, and membranes. Here the performance of the AMOEBA polarizable force field is evaluated under nonaqueous conditions by calculating the solvation free energies of small molecules in four common organic solvents. Results are compared with experimental data and equivalent simulations performed with the GAFF pairwise‐additive force field. Although AMOEBA results give mean errors close to “chemical accuracy,” GAFF performs surprisingly well, with statistically significantly more accurate results than AMOEBA in some solvents. However, for both models, free energies calculated in chloroform show worst agreement to experiment and individual solutes are consistently poor performers, suggesting non‐potential‐specific errors also contribute to inaccuracy. Scope for the improvement of both potentials remains limited by the lack of high quality experimental data across multiple solvents, particularly those of high dielectric constant. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.  相似文献   

2.
3.
Modeling the change in the electrostatics of organic molecules upon moving from vacuum into solvent, due to polarization, has long been an interesting problem. In vacuum, experimental values for the dipole moments and polarizabilities of small, rigid molecules are known to high accuracy; however, it has generally been difficult to determine these quantities for a polar molecule in water. A theoretical approach introduced by Onsager [J. Am. Chem. Soc. 58, 1486 (1936)] used vacuum properties of small molecules, including polarizability, dipole moment, and size, to predict experimentally known permittivities of neat liquids via the Poisson equation. Since this important advance in understanding the condensed phase, a large number of computational methods have been developed to study solutes embedded in a continuum via numerical solutions to the Poisson-Boltzmann equation. Only recently have the classical force fields used for studying biomolecules begun to include explicit polarization in their functional forms. Here the authors describe the theory underlying a newly developed polarizable multipole Poisson-Boltzmann (PMPB) continuum electrostatics model, which builds on the atomic multipole optimized energetics for biomolecular applications (AMOEBA) force field. As an application of the PMPB methodology, results are presented for several small folded proteins studied by molecular dynamics in explicit water as well as embedded in the PMPB continuum. The dipole moment of each protein increased on average by a factor of 1.27 in explicit AMOEBA water and 1.26 in continuum solvent. The essentially identical electrostatic response in both models suggests that PMPB electrostatics offers an efficient alternative to sampling explicit solvent molecules for a variety of interesting applications, including binding energies, conformational analysis, and pK(a) prediction. Introduction of 150 mM salt lowered the electrostatic solvation energy between 2 and 13 kcalmole, depending on the formal charge of the protein, but had only a small influence on dipole moments.  相似文献   

4.
A general molecular mechanics (MM) model for treating aqueous Cu2+ and Zn2+ ions was developed based on valence bond (VB) theory and incorporated into the atomic multipole optimized energetics for biomolecular applications (AMOEBA) polarizable force field. Parameters were obtained by fitting MM energies to that computed by ab initio methods for gas‐phase tetra‐ and hexa‐aqua metal complexes. Molecular dynamics (MD) simulations using the proposed AMOEBA‐VB model were performed for each transition metal ion in aqueous solution, and solvent coordination was evaluated. Results show that the AMOEBA‐VB model generates the correct square‐planar geometry for gas‐phase tetra‐aqua Cu2+ complex and improves the accuracy of MM model energetics for a number of ligation geometries when compared to quantum mechanical (QM) computations. On the other hand, both AMOEBA and AMOEBA‐VB generate results for Zn2+–water complexes in good agreement with QM calculations. Analyses of the MD trajectories revealed a six‐coordination first solvation shell for both Cu2+ and Zn2+ ions in aqueous solution, with ligation geometries falling in the range reported by previous studies. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
Molecular dynamics simulations of methane hydrate have been carried out using the polarizable AMOEBA and COS/G2 force fields. Properties calculated include the temperature dependence of the lattice constant, the OC and OO radial distribution functions, and the vibrational spectra. Both the AMOEBA and COS/G2 force fields are found to successfully account for the available experimental data, with overall somewhat better agreement with experiment being found for the AMOEBA model. Comparison is made with previous results obtained using TIP4P and SPC/E effective two-body force fields and the polarizable TIP4P-FQ force field, which allows for in-plane polarization only. Significant differences are found between the properties calculated using the TIP4P-FQ model and those obtained using the other models, indicating an inadequacy of restricting explicit polarization to in-plane only.  相似文献   

6.
We present a theoretical interpretation of the oxygen 1s photoelectron spectrum published by Ohrwall et al. [J. Chem. Phys. 123, 054310 (2005)]. A water cluster that contains 200 molecules was simulated at 215 K using the polarizable AMOEBA force field. The force field predicts longer O...O distances at the cluster surface than in the bulk. Comparisons to ab initio molecular dynamics (MD) simulations indicate that the force field underestimates the degree of surface relaxation. By comparing cluster lineshape models, computed from MD simulations, to the experimental spectrum we find further evidence of surface relaxation.  相似文献   

7.
Quantitative free energy computation involves both using a model that is sufficiently faithful to the experimental system under study (accuracy) and establishing statistically meaningful measures of the uncertainties resulting from finite sampling (precision). In order to examine the accuracy of a range of common water models used for protein simulation for their solute/solvent properties, we calculate the free energy of hydration of 15 amino acid side chain analogs derived from the OPLS-AA parameter set with the TIP3P, TIP4P, SPC, SPC/E, TIP3P-MOD, and TIP4P-Ew water models. We achieve a high degree of statistical precision in our simulations, obtaining uncertainties for the free energy of hydration of 0.02-0.06 kcal/mol, equivalent to that obtained in experimental hydration free energy measurements of the same molecules. We find that TIP3P-MOD, a model designed to give improved free energy of hydration for methane, gives uniformly the closest match to experiment; we also find that the ability to accurately model pure water properties does not necessarily predict ability to predict solute/solvent behavior. We also evaluate the free energies of a number of novel modifications of TIP3P designed as a proof of concept that it is possible to obtain much better solute/solvent free energetic behavior without substantially negatively affecting pure water properties. We decrease the average error to zero while reducing the root mean square error below that of any of the published water models, with measured liquid water properties remaining almost constant with respect to our perturbations. This demonstrates there is still both room for improvement within current fixed-charge biomolecular force fields and significant parameter flexibility to make these improvements. Recent research in computational efficiency of free energy methods allows us to perform simulations on a local cluster that previously required large scale distributed computing, performing four times as much computational work in approximately a tenth of the computer time as a similar study a year ago.  相似文献   

8.
Hydration free energy calculations are often used to validate molecular simulation methodologies and molecular mechanics force fields. We use the free-energy perturbation method together with the AMOEBA polarizable force field and the Poltype parametrization protocol to predict the hydration free energies of 52 molecules as part of the SAMPL4 blind challenge. For comparison, similar calculations are performed using the non-polarizable General Amber force field. Against our expectations, the latter force field gives the better results compared to experiment. One possible explanation is the sensitivity of the AMOEBA results to the conformation used for parametrization.  相似文献   

9.
Successive parameterizations of the GROMOS force field have been used successfully to simulate biomolecular systems over a long period of time. The continuing expansion of computational power with time makes it possible to compute ever more properties for an increasing variety of molecular systems with greater precision. This has led to recurrent parameterizations of the GROMOS force field all aimed at achieving better agreement with experimental data. Here we report the results of the latest, extensive reparameterization of the GROMOS force field. In contrast to the parameterization of other biomolecular force fields, this parameterization of the GROMOS force field is based primarily on reproducing the free enthalpies of hydration and apolar solvation for a range of compounds. This approach was chosen because the relative free enthalpy of solvation between polar and apolar environments is a key property in many biomolecular processes of interest, such as protein folding, biomolecular association, membrane formation, and transport over membranes. The newest parameter sets, 53A5 and 53A6, were optimized by first fitting to reproduce the thermodynamic properties of pure liquids of a range of small polar molecules and the solvation free enthalpies of amino acid analogs in cyclohexane (53A5). The partial charges were then adjusted to reproduce the hydration free enthalpies in water (53A6). Both parameter sets are fully documented, and the differences between these and previous parameter sets are discussed.  相似文献   

10.
The nucleophilic addition reactions of water and ammonia molecules toward the C5-C6 double bond of thymine radical cations were investigated using density functional theory. We predicted that the nucleophilic addition favored the C5-site of thymine radical cations, in contrast to the previous experimental observations in bulk solution where the addition product to the C6-site was dominant. Considering the molecular orbital factors, we estimated the relative reactivity of the C5- and C6-sites of thymine radical cations for the nucleophilic addition of ammonia. We found that the C5 was more reactive than the C6 for the small-size clusters of Thy1(NH3)n+, n = 0-2, in the gas phase and even in aqueous solution, though the difference in the reactivity between the two sites became smaller as the number of ammonia molecules increased. This variation of the reactivity was attributed to the electron density redistribution within the thymine radical cations induced by the ammonia molecules as a nucleophile. We suggest that the dominance of the C6-addition product in bulk solution is mainly due to the higher stability of the C6-addition product by solvation, rather than to the higher reactivity of the C6-site for the nucleophilic addition.  相似文献   

11.
Alkali (Li(+), Na(+), K(+), Rb(+), and Cs(+)) and halide (F(-), Cl(-), Br(-), and I(-)) ions play an important role in many biological phenomena, roles that range from stabilization of biomolecular structure, to influence on biomolecular dynamics, to key physiological influence on homeostasis and signaling. To properly model ionic interaction and stability in atomistic simulations of biomolecular structure, dynamics, folding, catalysis, and function, an accurate model or representation of the monovalent ions is critically necessary. A good model needs to simultaneously reproduce many properties of ions, including their structure, dynamics, solvation, and moreover both the interactions of these ions with each other in the crystal and in solution and the interactions of ions with other molecules. At present, the best force fields for biomolecules employ a simple additive, nonpolarizable, and pairwise potential for atomic interaction. In this work, we describe our efforts to build better models of the monovalent ions within the pairwise Coulombic and 6-12 Lennard-Jones framework, where the models are tuned to balance crystal and solution properties in Ewald simulations with specific choices of well-known water models. Although it has been clearly demonstrated that truly accurate treatments of ions will require inclusion of nonadditivity and polarizability (particularly with the anions) and ultimately even a quantum mechanical treatment, our goal was to simply push the limits of the additive treatments to see if a balanced model could be created. The applied methodology is general and can be extended to other ions and to polarizable force-field models. Our starting point centered on observations from long simulations of biomolecules in salt solution with the AMBER force fields where salt crystals formed well below their solubility limit. The likely cause of the artifact in the AMBER parameters relates to the naive mixing of the Smith and Dang chloride parameters with AMBER-adapted Aqvist cation parameters. To provide a more appropriate balance, we reoptimized the parameters of the Lennard-Jones potential for the ions and specific choices of water models. To validate and optimize the parameters, we calculated hydration free energies of the solvated ions and also lattice energies (LE) and lattice constants (LC) of alkali halide salt crystals. This is the first effort that systematically scans across the Lennard-Jones space (well depth and radius) while balancing ion properties like LE and LC across all pair combinations of the alkali ions and halide ions. The optimization across the entire monovalent series avoids systematic deviations. The ion parameters developed, optimized, and characterized were targeted for use with some of the most commonly used rigid and nonpolarizable water models, specifically TIP3P, TIP4P EW, and SPC/E. In addition to well reproducing the solution and crystal properties, the new ion parameters well reproduce binding energies of the ions to water and the radii of the first hydration shells.  相似文献   

12.
We provide an unsupervised adaptive sampling strategy capable of producing μs-timescale molecular dynamics (MD) simulations of large biosystems using many-body polarizable force fields (PFFs). The global exploration problem is decomposed into a set of separate MD trajectories that can be restarted within a selective process to achieve sufficient phase-space sampling. Accurate statistical properties can be obtained through reweighting. Within this highly parallel setup, the Tinker-HP package can be powered by an arbitrary large number of GPUs on supercomputers, reducing exploration time from years to days. This approach is used to tackle the urgent modeling problem of the SARS-CoV-2 Main Protease (Mpro) producing more than 38 μs of all-atom simulations of its apo (ligand-free) dimer using the high-resolution AMOEBA PFF. The first 15.14 μs simulation (physiological pH) is compared to available non-PFF long-timescale simulation data. A detailed clustering analysis exhibits striking differences between FFs, with AMOEBA showing a richer conformational space. Focusing on key structural markers related to the oxyanion hole stability, we observe an asymmetry between protomers. One of them appears less structured resembling the experimentally inactive monomer for which a 6 μs simulation was performed as a basis for comparison. Results highlight the plasticity of the Mpro active site. The C-terminal end of its less structured protomer is shown to oscillate between several states, being able to interact with the other protomer, potentially modulating its activity. Active and distal site volumes are found to be larger in the most active protomer within our AMOEBA simulations compared to non-PFFs as additional cryptic pockets are uncovered. A second 17 μs AMOEBA simulation is performed with protonated His172 residues mimicking lower pH. Data show the protonation impact on the destructuring of the oxyanion loop. We finally analyze the solvation patterns around key histidine residues. The confined AMOEBA polarizable water molecules are able to explore a wide range of dipole moments, going beyond bulk values, leading to a water molecule count consistent with experimental data. Results suggest that the use of PFFs could be critical in drug discovery to accurately model the complexity of the molecular interactions structuring Mpro.

We provide an unsupervised adaptive sampling strategy capable of producing μs-timescale molecular dynamics (MD) simulations of large biosystems using many-body polarizable force fields (PFFs).  相似文献   

13.
Over the past 4 years the GROMOS96 force field has been successfully used in biomolecular simulations, for example in peptide folding studies and detailed protein investigations, but no applications to lipid systems have been published yet. Here we provide a detailed investigation of aliphatic liquid systems. For liquids of larger aliphatic chains, n‐heptane and longer, the standard GROMOS96 parameter sets 43A1 and 43A2 yield a too low pressure at the experimental density. Therefore, a reparametrization of the GROMOS96 force field regarding aliphatic carbons was initiated. The new force field parameter set 45A3 shows considerable improvements for n‐alkanes, cyclo‐, iso‐, and neoalkanes and other branched aliphatics. Liquid densities and heat of vaporization are reproduced for almost all of these molecules. Excellent agreement is found with experiment for the free energy of hydration for alkanes. The GROMOS96 45A3 parameter set should, therefore, be suitable for application to lipid aggregates such as membranes and micelles, for mixed systems of aliphatics with or without water, for polymers, and other apolar systems that may interact with different biomolecules. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 1205–1218, 2001  相似文献   

14.
张强  杨忠志 《物理化学学报》2007,23(10):1565-1571
采用传统水分子力场模型(SPC, TIPnP(n=3-5))和极化模型(POL3, AMOEBA, SPC-FQ, TIP4P-FQ)对水分子二聚体团簇性质进行了比较和研究. 以从头计算和实验数据为依据, 分析水分子在外场作用下体系的静电极化, 电荷转移和分子结构变化. 通过水分子二聚体结合能和各分解能量项评价极化静电势能在双分子结合能中的地位和作用, 以及各水分子力场的适用性. 通过水分子团簇多体相互作用能的计算,展示不同极化水分子力场定量计算极化能量的实际能力. 通过对力场模型结果的对比和分析, 为进一步发展极化力场模型, 并应用到其他体系提供借鉴和依据.  相似文献   

15.
Two low-energy minima of (H2O)21 with very different H-bonding arrangements have been investigated with the B3LYP density functional and RIMP2 methods, as well as with the TIP4P, Dang-Chang, AMOEBA, and TTM2-F force fields. The AMOEBA and TTM2-F model potentials give an energy ordering that agrees with the results of the electronic structure calculations, while the TIP4P and Dang-Chang models give the opposite ordering. Insight into the role of many-body polarization for establishing the relative stability of the two isomers is provided by an n-body decomposition of the energies calculated using the various theoretical methods.  相似文献   

16.
17.
A current emphasis in empirical force fields is on the development of potential functions that explicitly treat electronic polarizability. In the present article, the commonly used methodologies for modeling electronic polarization are presented along with an overview of selected application studies. Models presented include induced point-dipoles, classical Drude oscillators, and fluctuating charge methods. The theoretical background of each method is followed by an introduction to extended Lagrangian integrators required for computationally tractable molecular dynamics simulations using polarizable force fields. The remainder of the review focuses on application studies using these methods. Emphasis is placed on water models, for which numerous examples exist, with a more thorough discussion presented on the recently published models associated with the Drude-based CHARMM and the AMOEBA force fields. The utility of polarizable models for the study of ion solvation is then presented followed by an overview of studies of small molecules (e.g., CCl4, alkanes, etc.) and macromolecule (proteins, nucleic acids and lipid bilayers) application studies. The review is written with the goal of providing a general overview of the current status of the field and to facilitate future application and developments.  相似文献   

18.
In studies of ion channel systems, due to the huge computational cost of polarizable force fields, classical force fields remain the most widely used for a long time. In this work, we used the AMOEBA polarizable atomic multipole force field in enhanced sampling simulations of single-channel gramicidin A (gA) and double-channel gA systems and investigated its reliability in characterizing ion-transport properties of the gA ion channel under dimerization. The influence of gA dimerization on the permeation of potassium and sodium ions through the channel was described in terms of conductance, diffusion coefficient, and free energy profile. Results from the polarizable force field simulations show that the conductance of potassium and sodium ions passing through the single- and double-channel agrees well with experimental values. Further data analysis reveals that the molecular mechanism of protein dimerization affects the ion-transport properties of gA channels, i.e., protein dimerization accelerates the permeation of potassium and sodium ions passing through the double-channel by adjusting the environment around gA protein (the distribution of phospholipid head groups, ions outside the channel, and bulk water), rather than directly adjusting the conformation of gA protein.  相似文献   

19.
ABSTRACT

This article summarises recent advances made in our laboratory towards the development of new technological applications, such as biosensors and organic light-emitting diodes (OLEDs) based on liquid crystals (LCs) other than LC displays. The study of biomolecular interaction using LC material relies on the specific interaction between the LC and the biomolecule of interest at interfaces that permit the biomolecular events to be amplified into easily measured signals for various sensing applications. In the first part, we emphases recent studies in the design and modulation of LC-based interfaces based on robust colloidal LC gels for biological amplification, qualitative and quantitative understanding of important biomolecular interactions at LC–aqueous interfaces for diagnostic and laboratory applications and design of LC droplets that hold promise to act as a marker for cells and cell-based interactions. In the second part, we described design of organic materials for application in OLEDs on various discotic monomers, dimers and oligomers. These molecules have the ability to transport charges, holes and electrons. In addition, because of the high conductivity and ππ stacking, they are considered as the advanced materials for practical applications. The technological advances in our laboratory using discotic LCs will be briefly presented in this article.  相似文献   

20.
以铂微电极法测定了在SDS/n-C5H11OH/H2O溶致液晶中SDS(十二烷基硫酸钠)分子的扩散系数.结果表明,恒定质量比SDS/n-C5H11OH条件下,溶致液晶中SDS分子的扩散系数随体系中水含量的增加而增加;恒定质量比SDS/H2O,溶致液晶中SDS分子的扩散系数随正戊醇含量的增加而增加;恒定质量比H2O/n-C5H11OH ,溶致液晶中SDS分子的扩散系数随SDS含量的增加而降低.六角状液晶中SDS分子的扩散系数比层状液晶中SDS分子的扩散系数低约1个数量级,而比W/O、O/W胶束的扩散系数低3~5个数量级.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号