首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Silica gel surfaces modified with 2- or 4-aminopyridine groups were used to adsorb MCl2 (M = Co, Ni, Cu, Zn) from ethanol and acetone solutions at 298 K. The chemisorption isotherms fitted a modified Langmuir equation very well and are similar for all cations. The capacity of anchored 4-aminopyridine (SIL4) in adsorbing the metallic ion is larger than that of the immobilized 2-aminopyridine (SIL2). The maximum retention capacity has the sequence Cu> Co> Zn in acetone for both surfaces, and Zn> Co> Cu> Ni for SIL2, and Zn> Cu> Co> Ni for SIL4 in ethanol. For a given cation, the variation in enthalpy of solvent-solute exchange on the surface is always larger in ethanol. This process seems to be related to the enthalpy of solvation of the cation involved in the exchange.  相似文献   

2.
Adsorption of Cd (II), Cu (II), Ni (II), and Zn (II) from aqueous solutions on anaerobically digested sludge has been investigated. Experimental data has been fit to Langmuir, Freundlich, and Redlich-Peterson isotherms to obtain the characteristic parameters of each model. Based on the maximum adsorption capacity obtained from the Langmuir and the Redlich-Peterson isotherm the affinity of the studied metals for the sludge has been established as Cu (II)>Cd (II)>Zn (II)>Ni (II). Adsorption tests from multimetal systems confirm the affinity order obtained in the individual metal tests. The adsorption capacity for Cu (II) measured in individual tests is not reduced by the presence of the other above referred metals. Desorption of Zn (II) and Cd (II) previously bound to the sludge in front of Cu (II) and HCl solutions is also reported. Copyright 2000 Academic Press.  相似文献   

3.
Using zirconium tetrabutoxide, diaminedecane, and diamineoctane as precursors, a templated hexagonal zirconia matrix is synthesized and characterized by X-ray diffractometry and scanning electron microscopy. The adsorption capacity of such a matrix toward Co(II), Ni(II), Cu(II), and Zn(II) from aqueous solutions is studied. The adsorption affinity of the synthesized hexagonal templated zirconia toward the cations is Cu(II)>Zn(II) >Ni(II)>Co(II). It is also verified that the adsorption of the cations follows a Langmuir and not a Freundlich isotherm. All obtained isotherms are of type I, according to the IUPAC classification. The observed adsorption affinity sequence can be explained by taking into account the velocity constant for the substitution of water molecules into the cation coordination spheres, as well as the Irving-Williams series.  相似文献   

4.
Nano-structured 2-line ferrihydrite was synthesized by a pH-controlled precipitation technique at 90 °C. Chemical, X-ray diffraction (XRD), Fourier transform infrared (FTIR) and Raman analyses confirmed the sample to be 2-line ferrihydrite. The nano nature of the prepared sample was studied by transmission electron microscopy (TEM). The surface area obtained by the Brunauer-Emmett-Teller (BET) method was 175.8 m(2) g(-1). The nanopowder so obtained was used to study its behaviour for the removal of Pb(II), Cd(II), Cu(II) and Zn(II) from aqueous solutions. The relative importance of experimental parameters such as solution pH, contact time and concentration of adsorbate on the uptake of various cations was evaluated. By increasing the pH from 2.0 to 5.5, adsorption of the four cations increased. The kinetics parameters were compared by fitting the contact time data to both linear as well as non-linear forms of pseudo-second-order models. Linear forms of both Langmuir and Freundlich models fitted the equilibrium data of all the cations except for Pb(II) which was also fitted to the non-linear forms of both the models as it gave a low R(2) value of 0.85 for the Langmuir model. High Langmuir monolayer capacities of 366, 250, 62.5 and 500 mg g(-1) were obtained for Pb(II), Cd(II), Cu(II) and Zn(II), respectively. Presence of chloride or sulfate had an adverse effect on cation adsorption. The interactive effects on adsorption from solutions containing two, three or four cations were studied. Surprisingly no Cd(II) adsorption was observed in Pb(II)-Cd(II), Pb(II)-Cd(II)-Zn(II) and Pb(II)-Cd(II)-Cu(II)-Zn(II) systems under the studied concentration range. The overall loading capacity of the adsorbent decreased in mixed cation systems. Metal ion loaded adsorbents were characterized by XRD, FTIR and Raman techniques. The high adsorption capability of the 2-lines ferrihydrite makes it a potentially attractive adsorbent for the removal of cations from aqueous solutions.  相似文献   

5.
《Analytical letters》2012,45(9):1807-1820
ABSTRACT

5-amino-1,3,4-thiadiazole-2-thiol groups attached on a silica gel surface have been used for adsorption of Cd(II), Co(II), Cu(II), Fe(III), Ni(II), Pb(II) and Zn(II) from aqueous solutions. The adsorption capacities for each metal ion were (in mmol.g?1): Cd(II)= 0.35, Co(II)= 0.10, Cu(II)= 0.15, Fe(III)= 0.20, Hg(II)= 0.46, Ni(II)= 0.16, Pb(II)= 0.13 and Zn(II)= 0.15. The modified silica gel was applied in the preconcentration and quantification of trace level metal ions present in water samples (river, and bog water).  相似文献   

6.
The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D), chemically anchored to a silica gel surface, was used to adsorb and preconcentrate the same herbicide from aqueous solutions at room temperature. From a series of adsorption isotherms adjusted to a modified Langmuir equation, the maximum number of moles adsorbed was calculated as 4.67 x 10(-5) mol g(-1), with the highest retention capacity at pH 5. This modified silica gel was used in a column for preconcentrating trace levels of 2,4-D. The preconcentrated herbicide can be directly eluted with methanol with a recovery efficiency higher than 97%. The concentration factor was 8.33.  相似文献   

7.
Adsorption of Co, Ni, Cu, and Zn onto a poorly crystalline hydrous manganese dioxide (delta-MnO2) has been studied in complex electrolyte solutions such as (a) 0.5 M NaCl+0.054 M MgCl2, (b) 0.5 M NaCl+0.028 M Na2SO4, and (c) artificial sea water prepared according to the standard literature method. These three solutions allow us to identify the specific effect of major cations, major anions, and the mixture of major cations and anions (including carbonate and bicarbonate) that is present in real sea water. The adsorption isotherm in major ion sea water at pH 7.25 indicates that while Co and Zn exhibit increases in adsorption with increase in concentration, Ni shows relatively poor adsorption, reaching a plateau at 0.075 mM concentration. The three trace metals (Co, Ni, and Zn) show Langmuirian behavior for adsorption at low concentration. It is generally observed that the fractional adsorption vs pH curve shifts to higher pH either in the presence of 0.054 M MgCl2 or in sea water. In the presence of 0.028 M Na2SO4 the fractional adsorption vs pH curve remains almost unchanged with respect to a 0.5 M NaCl solution. The competitive adsorption of one trace metal in the presence of other three in major ion sea water indicates that this phenomenon is more predominant with Ni and Zn than with Co and Cu.  相似文献   

8.
Calorimetric titration was applied to study the interaction of zinc, cadmium and mercury on surface of silica gel modified with 2-aminoethanethiol, using 3-chloropropyltrimetoxysilane as precursor silylating agent. The anchored Sil–SNH2 surface gave 0.70 mmol g–1 of molecules covalently bonded per gram of silica. This surface displayed a chelating moiety containing sulfur and nitrogen basic centers, which are potentially capable of extracting cations from aqueous solutions, such as MCl2 (M=Zn, Cd, Hg). This process of extraction was carried out by the batch method when similar chemisorption isotherms were observed for all cations. The data were adjusted to modified Langmuir equation. The sequence of the maximum retention capacity was Hg>Cd>Zn. The processes of cation interactions showed exothermic enthalpies. The calculated ΔG values are in agreement with the spontaneity of the proposed reactions and conformed to the values found by using Langmuir model applied to these systems. The endothermic entropic values, as expected, indicated that the reactions are favorable.  相似文献   

9.
Ethylenediamine molecule was chemically bonded on a silica gel surface previously anchored with 3-glycidoxypropyltrimethoxysilane. This new surface was employed to adsorb divalent cation from aqueous solutions at 298±1 K. The series of adsorption isotherms were adjusted to a modified Langmuir equation from data obtained by suspending the solid with MCl2 (M=Cu, Ni, Zn and Co) solutions, which gave the maximum number of moles adsorbed as 1.54, 0.56, 0.45 and 0.36 mmol g-1 for Cu, Ni, Co and Zn, respectively. Suspended aliquots of the chemically modified surface were calorimetrically titrated and the thermodynamic data showed the system is favored enthalpically and by free Gibbs energy. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
The aim of this paper is to study the adsorption of the heavy metals (Cd(II), Cu(II), Mn(II), Pb(II), and Zn(II)) from aqueous solutions by a natural Moroccan stevensite called locally rhassoul. We carried out, first, a mineralogical and physicochemical characterization of stevensite. The surface area is 134 m2/g and the cation exchange capacity (CEC) is 76.5 meq/100 g. The chemical formula of stevensite is Si3.78Al0.22Mg2.92Fe0.09Na0.08K0.08O10(OH)2.4H2O. Adsorption tests of Cd(II), Cu(II), Mn(II), Pb(II), and Zn(II) in batch reactors were carried out at ambient temperature and at constant pH. Two simplified models including pseudo-first-order and pseudo-second- order were used to test the adsorption kinetics. The equilibrium time and adsorption rate of adsorption were determined. The increasing order of the adsorption rates follows the sequence Mn(II) > Pb(II) > Zn(II) > Cu(II) > Cd(II). The Dubinin-Radushkevich (D-R), Langmuir, and Redlich-Peterson (R-P) models were adopted to describe the adsorption isotherms. The maximal adsorption capacities at pH 4.0 determined from the D-R and Langmuir models vary in the following order: Cu(II) > Mn(II) > Cd(II) > Zn(II) > Pb(II). The equilibrium data fitted well with the three-parameter Redlich-Peterson model. The values of mean energy of adsorption show mainly an ion-exchange mechanism. Also, the influence of solution pH on the adsorption onto stevensite was studied in the pH range 1.5-7.0.  相似文献   

11.
Donnan-membrane-equilibrium graphite-furnace atomic-absorption spectrophotometry (DME-GFAAS) has been developed to determine cations of trace metals in river water. The method employs a cation-exchange membrane to separate metal cations from their complexes; both total and cationic forms of metals were determined by means of GFAAS. The sensitivity of the method for the measurement of trace metal cations is determined by the detection limits of GFAAS for the metals of interest. Comparable concentrations of metal cations in water from NBS and from the Erhjen river were obtained between the DME-GFAAS and calculated (WATEQ4F) methods, indicating that the developed method is promising for natural fresh waters. The effect of pH on the distribution of metal cation in the NBS river water is significant for Cu and Pb; concentrations of these cations increase with decreasing pH. However, the concentrations of Cd and Zn cations do not vary with pH except that the concentration of the Zn cation decreases significantly as the pH value increases beyond 9. The method was applied to measure the capacity of complexing Cu in Chung-Lu river water, which was estimated to be 2.3 μM.  相似文献   

12.
The present work investigates the influence of acid activation of montmorillonite on adsorption of Cd(II), Co(II), Cu(II), Ni(II), and Pb(II) from aqueous medium and comparison of the adsorption capacities with those on parent montmorillonite. The clay-metal interactions were studied under different conditions of pH, concentration of metal ions, amount of clay, interaction time, and temperature. The interactions were dependent on pH and the uptake was controlled by the amount of clay and the initial concentration of the metal ions. The adsorption capacity of acid-activated montmorillonite increases for all the metal ions. The interactions were adsorptive in nature and relatively fast and the rate processes more akin to the second-order kinetics. The adsorption data fitted both Langmuir and Freundlich isotherms, indicating that strong forces were responsible for the interactions at energetically nonuniform sites. The Langmuir monolayer capacity of the acid-activated montmorillonite is more than that of the parent montmorillonite (Cd(II): 32.7 and 33.2 mg/g; Co(II): 28.6 and 29.7 mg/g; Cu(II): 31.8 and 32.3 mg/g; Pb(II): 33.0 and 34.0 mg/g; and Ni(II): 28.4 and 29.5 mg/g for montmorillonite and acid-activated montmorillonite, respectively). The thermodynamics of the rate processes showed the adsorption of Co(II), Pb(II), and Ni(II) to be exothermic, accompanied by decreases in entropy and Gibbs free energy, while the adsorption of Cd(II) and Cu(II) was endothermic, with an increase in entropy and an appreciable decrease in Gibbs free energy. The results have established the potential use for montmorillonite and its acid-activated form as adsorbents for Cd(II), Co(II), Cu(II), Ni(II), and Pb(II) ions from aqueous media.  相似文献   

13.
Isothermal calorimetry was used to determine enthalpy changes for interaction of divalent cobalt, nickel, copper, and zinc chlorides with silica gel functionalized with vanillin, Sil-Van. The thermal effect, Q(int), and the corresponding amount of cation that interacts, n(int), were obtained in the same experiment. Langmuir expressions for adsorption isotherms were applied to determine the maximum adsorption capacity to form a monolayer, N(mon), and the energy of interaction for a saturated monolayer per gram of Sil-Van, Q(mon). From knowledge of N(mon) and Q(mon), the molar enthalpy of interaction for formation of a monolayer of anchored cations per gram of Sil-Van, Delta(mon)H(m), was determined. Interactions between the Lewis-acidic cations and the donor atom attached to silica are reflected by Delta(mon)Hm values in the order Ni2+ > Cu2+ > Zn2+ congruent with Co2+.  相似文献   

14.
The feasibility of using two important and common clay minerals, kaolinite and montmorillonite, as adsorbents for removal of toxic heavy metals has been reviewed. A good number of works have been reported where the modifications of these natural clays were done to carry the adsorption of metals from aqueous solutions. The modification was predominantly done by pillaring with various polyoxy cations of Zr4+, Al3+, Si4+, Ti4+, Fe3+, Cr3+or Ga3+, etc. Preparation of pillared clays with quaternary ammonium cations, namely, tetramethylammonium-, tetramethylphosphonium- and trimethyl-phenylammonium-, N'-didodecyl-N, N'-tetramethylethanediammonium, etc, are also common. Moreover, the acid treatment of clays often boosted their adsorption capacities. The adsorption of toxic metals, viz., As, Cd, Cr, Co, Cu, Fe, Pb, Mn, Ni, Zn, etc., have been studied predominantly. Montmorillonite and its modified forms have much higher metal adsorption capacity compared to that of kaolinite as well as modified-kaolinite.  相似文献   

15.
The aim of the present study was to investigate the adsorption properties of aminopropyltriethoxysilane (APS) modified microfibrillated cellulose (MFC) in aqueous solutions containing Ni(II), Cu(II) and Cd(II) ions. The modified adsorbents were characterized using elemental analysis, Fourier transform infrared spectroscopy, SEM and zeta potential analysis. The adsorption and regeneration studies were conducted in batch mode using various different pH values and contact times. The maximum removal capacities of the APS/MFC adsorbent for Ni(II), Cu(II), and Cd(II) ions were 2.734, 3.150 and 4.195 mmol/g, respectively. The Langmuir, Sips and Dubinin-Radushkevich models were representative to simulate adsorption isotherms. The adsorption kinetics of Ni(II) Cu(II), and Cd(II) adsorption by APS/MFC data were modeled using the pseudo-first-order, pseudo-second-order and intra-particle diffusion kinetics equations. The results indicate that the pseudo-second-order kinetic equation and intra-particle diffusion model were adequate to describe the adsorption kinetics.  相似文献   

16.
Chitosan biopolymer chemically modified with the complexation agent 2[-bis-(pyridylmethyl)aminomethyl]-4-methyl-6-formylphenol (BPMAMF) was employed to study the kinetics and the equilibrium adsorption of Cu(II), Cd(II), and Ni(II) metal ions as functions of the pH solution. The maximum adsorption of Cu(II) was found at pH 6.0, while the Cd(II) and Ni(II) maximum adsorption occurred in acidic media, at pH 2.0 and 3.0, respectively. The kinetics was evaluated utilizing the pseudo-first-order and pseudo-second-order equation models and the equilibrium data were analyzed by Langmuir and Freundlich isotherms models. The adsorption kinetics follows the mechanism of the pseudo-second-order equation for all studied systems and this mechanism suggests that the adsorption rate of metal ions by CHS-BPMAMF depends on the number of ions on the adsorbent surface, as well as on their number at equilibrium. The best interpretation for the equilibrium data was given by the Langmuir isotherm and the maximum adsorption capacities were 109 mg g-1 for Cu(II), 38.5 mg g-1 for Cd(II), and 9.6 mg g-1 for Ni(II). The obtained results show that chitosan modified with BPMAMF ligand presented higher adsorption capacity for Cu(II) in all studied pH ranges.  相似文献   

17.
Separations of metal cations on a column packed with the strongly acidic cation exchanger Separon SGX CX were investigated in the presence of alpha-hydroxyisobutyric acid (HIBA) in the mobile phase. A retention model based on the general theory of side equilibria was elaborated and relations describing dependences of capacity factors of analytes on the compositon of the mobile phase were derived. Effects of HIBA concentration and pH of the mobile phase on the analyte retention were studied in detail. Stability constants of divalent metal cations (Cd(2+), Co(2+), Mn(2+), Ni(2+) and Zn(2+)) with HIBA were calculated from the experimental dependences of the reciprocal values of capacity factors on the ligand concentration.  相似文献   

18.
Bağ H  Türker AR  Lale M 《Talanta》2000,51(5):1035-1043
A method for the determination of Cu, Zn, Fe, Ni and Cd by flame atomic absorption spectrophotometry (FAAS) after preconcentrating on a column containing Escherichia coli immobilized on sepiolite has been developed. Optimum pH values, amount of adsorbent, elution solution and flow rate have been obtained for the elements studied. The effect of interfering ions on the recovery of the analytes has also been investigated. Recoveries of Cu, Zn, Fe, Ni and Cd by E. coli immobilized on sepiolite were 99.1+/-0.6, 98.2+/-0.6, 98.1+/-0.5, 97.2+/-0.8 and 98.2+/-0.4% at 95% confidence level, respectively. The adsorption capacity of E. coli immobilized on sepiolite was found as 0.148, 0.064, 0.098, 0.134 and 0.088 mmol/g for Cu, Zn, Fe, Ni and Cd, respectively. The proposed method was applied to the determination of trace metals in alloys (NBS SRM 85b). Trace metals have been determined with relative error lower than 10%.  相似文献   

19.
A solid co-precipitated material obtained from an ion-pair of 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (5-Br-PADAP) and tetraphenylborate (TPB), and microcrystals of naphthalene has been tried as an adsorbent for the column preconcentration of copper(I), iron(II), nickel(II) and Zn(II). The retention of the metal ions was found to be maximum and constant in the pH range 3.0-8.0 for Cu, 3.8-7.5 for Fe, 4.5-7.5 for Ni and 8.5-11.0 for Zn. The elements were determined by FAAS after dissolving the metal along with the adsorbent in an organic solvent (10 mL of DMF). The characteristic concentration for 1% absorption was found to be 0.0332, 0.0536, 0.0537 and 0.0142 (aqueous medium 0.0512, 0.0638, 0.1294 and 0.0216) microg mL(-1) for Cu, Fe, Ni and Zn, respectively. The calibration plot was linear in the range 1.5-20.0, 2.0-38.0, 2.5-25.0 and 0.5-15.0 micro g in the final 10 mL of DMF solution for Cu, Fe, Ni and Zn, respectively. Various parameters such as pH, volume of buffer, amount of adsorbent, flow rate, preconcentration factor and effect of diverse salts and cations were studied. The optimised conditions were utilized for the determination of Cu, Fe, Ni and Zn in various water, beverage and human hair samples.  相似文献   

20.
Sheng R  Wang P  Gao Y  Wu Y  Liu W  Ma J  Li H  Wu S 《Organic letters》2008,10(21):5015-5018
A coumarin-based colorimetric chemosensor 1 was designed and synthesized. It exhibits good sensitivity and selectivity for the copper cation over other cations such as Zn(2+), Cd(2+), Pb(2+), Co(2+), Fe(2+), Ni(2+), Ag(+), and alkali and alkaline earth metal cations both in aqueous solution and on paper-made test kits. The change in color is very easily observed by the naked eye in the presence of Cu(2+) cation, whereas other metal cations do not induce such a change. The quantitative detection of Cu(2+) was preliminarily examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号